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Abstract 

UNIVERSITY OF WINCHESTER  

ABSTRACT  

Intra-individual movement variability in cycling  

Chris Whittle  

 ORCID number: 0000-0002-0373-4910 

Doctor of Philosophy 

 February 2023 

Movement variability within repeated performances of the same sporting skill has long been 
considered evidence of poor motor control and seen as detrimental to overall performance. 
Changing attitudes and improved measurement technology have led to the suggestion that this may 
not be true. Instead, it has been suggested that movement variability may play a functional role by 
allowing athletes to adapt their technique to better match the changing combinations of task 
constraints which can be encountered in a dynamic performance environment. To investigate 
whether this is the case during cycling, Study 1 of this thesis assessed the amount of variability in 
sagittal plane joint kinematics displayed by cyclists of differing skill levels during a simulated time 
trial event indoors. The lack of relationship between skill level and amount of movement variability 
shown here was attributed to too few task perturbations in a laboratory environment and therefore 
investigations were moved to a field setting. 

Before field testing could be undertaken, the validity of power measuring pedals (Study 2), electro-
goniometers (Study 3), a wearable inertial measurement suit (Study 4) and individual inertial 
measurement units (Study 5) was investigated in order to provide suitable methods of data 
collection for an outdoor kinematic investigation. 

Study 6 investigated the variability of sagittal plane joint kinematics during outdoor time trial 
performance and revealed that there is a statistically significant strong negative linear relationship 
between a cyclist’s skill level and the amount of movement variability they display. More 
experienced cyclists displayed significantly greater levels of movement variability than their less 
experienced counterparts at both the Hip-Knee and Knee-Ankle joint couplings and this was related 
to faster overall finishing times for the time trial event. 

Following these findings, Study 7 began investigations into the underlying muscular recruitment 
patterns which may be driving the variable movement patterns displayed during cycling. Little 
evidence was seen for an established relationship between the level of variability of muscular 
recruitment employed by participants and the performance outcome during indoor simulated time 
trials on a cycle ergometer. This, again, was attributed to a lack of task perturbations in a laboratory 
environment and therefore future investigations in a more ecologically valid setting are 
recommended.   
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i. COVID-19 STATEMENT 

Before introducing the focus of this thesis, it is important to acknowledge the impact that the global 

COVID-19 pandemic had upon its completion. 

At the start of 2020, reports of a novel virus emerged from Wuhan, China. This was swiftly followed 

by the UK government publishing the first coronavirus guidance page on GOV.UK on the 24th of 

January and the first two confirmed cases in the UK on the 30th of January (Wright, 2021). 

By the 5th of March 2020 the first UK death from COVID-19 was confirmed (BBC News, 2020) and 

global cases passed 100,000 on the 7th (WHO Statement on Cases of COVID-19 Surpassing 100 000, 

2020). The exponential growth of infection numbers led to national lockdown restrictions coming 

into force on the on the 26th of March 2020 (Queen’s Printer of Acts of Parliament, n.d.) essentially 

forcing all University of Winchester facilities to close.  

At this time, I was conducting data collection for a goniometer-based validity paper (Study 3), which 

needed to be completed in order to validate the equipment before potentially using it in the 

following outdoor investigation. This, coupled with the fact that as a full-time member of staff I was 

also trying to contend with the increased workload created by the wholesale shift to online only 

delivery of taught content on a highly practical degree course, meant that data collection essentially 

ceased until all restrictions were lifted on the 18th of July 2021 (Brown and Kirk-Wade, 2021).  

Despite restrictions being lifted, the effects of the pandemic continued and were still very obvious 

when trying to conduct the final kinematic study for this thesis (Study 6). Due to the fact that this 

study required almost exclusively field testing it was not appropriate to conduct data collection in 

the winter months for a number of reasons.  

Firstly, while investigating intra-individual movement variability it was important that all participants 

complete their testing events in, as close as possible, matching weather conditions. This would have 

been far more difficult to achieve in the winter months as not only are weather conditions more 

variable, but it was also likely that fewer participants will be willing to undertake outdoor testing 

sessions in sub-par weather conditions.  

Additionally, the outdoor investigation was ideally designed to recruit participants who were in “in 

season” form in order to get a true representation of their physical capabilities. The widespread 

disruption predicated by the pandemic led to the wholesale cancellation of competitive cycling 

events for 2020 and 2021, which would normally run from late spring through the summer months. 
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The result being that participants were far less likely to accurately replicate their competition level 

capabilities had they undergone testing immediately after the restrictions were lifted.  

Due to the time constraints of the PhD registration period, and despite the concerns outlined above, 

the outdoor data collection was eventually conducted between October 2021 and July 2022 in a 

format that was somewhat scaled back from what had originally been planned. The original method 

featured three groups of cyclists, each featuring a minimum of 8 participants, in order to garner 

suitable levels of statistical power.  

These three groups would have ideally been: 1) recreational cyclists who had never entered a 

competitive event or had limited cycling experience but were still able to complete the required 10 

mile event; 2) experienced cyclists, typically cycling club members, who either spent significant time 

training each week or had entered a number of competitive events; and 3) elite competitive cyclists 

who had entered numerous competitive events, had a structured training regimen and/or made 

their living through cycling. It was felt that this might address some of the issues encountered during 

the indoor investigations where participants were, perhaps, not spread far enough along the 

performance spectrum to enable a true comparison of “novice” versus “experienced” cyclists (see 

Section 3.2.4 for more details about issues with participant groupings). 

In actuality, outdoor data collection resulted in the recruitment of 11 participants (see Study 6 for 

details) and, although it is probably fair to say that both ends of the desired spectrum were 

represented in this sample, there were certainly not enough participants to group them in the way 

described above and provide any level of appropriate statistical power. This is something which 

could potentially be addressed in post-doctoral research but, as mentioned before, it was not 

possible to rectify given the time restrictions related to the period of registration. 
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1. INTRODUCTION 

Cycling is a popular leisure activity across the globe with approximately 6.5 million people 

participating in cycling of some form in England alone (Statista, 2022). As with any leisure pastime, 

individuals are involved to varying degrees, ranging from simply commuting via bicycle to those who 

make a living by competing at an elite level, and a wide array of differing participation modes in 

between. 

For those who participate at the competitive end of the cycling spectrum and want to improve 

performance, there is a vast array of published literature from which to draw (e.g. Gonzalez and Hull, 

1989; Too, 1990; Coyle et al., 1991; Jeukendrup and Martin, 2001; Hopker and Jobson, 2012). One 

such publication which gained traction outside of the scientific community was the 2008 book by 

Malcom Gladwell entitled “Outliers”. This book introduced the “10,000-hour rule” which was quickly 

adopted by popular media as a way of explaining the complex interactions involved in skill 

development. This “rule” was based on earlier work by Ericsson, Roring and Nandagopal (2007), 

which reviewed published evidence suggesting that superior reproducible performance generally 

emerges only after extended periods of deliberate practice that result in adaptations to the 

participant’s physiological characteristics and cognitive mechanisms.   

1.1 10,000 hours of sport 

Despite Ericsson (2013) being openly critical about the overgeneralisation, misinterpretation and 

oversimplification of his findings, the “10,000 hours rule” gained a popular following, with some 

interpreting it to mean that achieving skill mastery was simply a matter of putting in significant 

practice hours. This easily digestible idea that 10,000 hours of practice will, almost automatically, 

result in elite status became a frequent topic of popular science writing to the point that 

Macnamara, Hambrick and Oswald (2014) were able to conduct a review of 9331 research papers 

about practice and skill acquisition with 88 of these papers specifically focussing on the amount of 

practice required. Their findings suggested that deliberate practice explained 26% of the variance in 

performance for games, 21% for music, 18% for sports, 4% for education, and less than 1% for 

professions. They therefore suggested that, although clearly important, deliberate practice is not the 

automatic route to success that the idea’s popular following would like to believe.  

In defence of Gladwell, he did acknowledge that he hadn’t intended for the “rule” to be applied to 

sports or games and cited the example of chess where he “could play for 100 years and […] never be 

a grandmaster”. That being said, there may be mechanisms that explain the improvement in 

performance seen as a result of an extended period of focussed practice if Gladwell’s “rule” is 

considered using a relatively new perspective to investigate intra-individual movement variability.  
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1.2 Movement variability 

Bartlett, Wheat and Robins (2007) identified that sports biomechanics has tended to assume that 

intra-individual variability in movement patterns is merely “noise” and an unimportant issue. They 

further suggested that this was based on researchers’ implicit assumption that movement patterns 

for skilled performers are invariant. This supports the suggestions of Davids, Glazier, Araújo and 

Bartlett (2003), Van Emmerick and Van Wegen (2000), Hamill, Van Emmerick, Heiderscheit, and Li 

(1999) and Newell and Corcos (1993) that movement variability has historically been considered to 

be either detrimental to normal function or purely evidence of random noise within the 

neuromuscular or measurement system. This has led to the hypothesis that this “noise” may result 

in an inability to convey consistent results and, therefore, that it should be discounted. 

This assertion is not restricted to the field of sports science, however. For example, the majority of 

studies on motor learning (e.g., Konczak, Vander Velden, & Jaeger, 2009; Purtsi, Vihko, Kankaanpää 

& Havas, 2012) have emphasized decreased variation in performance as a hallmark of the learning 

process. In a similar fashion, increased variability has typically been associated with the performance 

decrements due to aging and disease (Kornatz, Christou and Enoka, 2005) and a decrease in 

efficiency (Padulo et al., 2023). Davids, Glazier, Araújo and Bartlett (2003), however, suggested that 

this approach to variability may not be appropriate. They instead proposed that variability in 

movement systems should be considered to be an essential element of normal, healthy function and 

that it may perform a functional role in helping individuals to adapt to the potentially changeable 

constraints of a given task. This agrees with work by Bradshaw et al. (2007) and Schot et al. (2002) 

who suggested that the true variation of the individual needs to be considered without the 

technological error in measurements. It is further supported by Van Emmerik, Hamill, and 

McDermott (2005) who emphasised that, whereas more traditional research has regarded variability 

as an indicator of poor motor performance, their research highlights that it may perform a more 

functional role.  

Button, Davids and Schöellhorn (2006) and Bradshaw and Aisbett (2006) both suggested that 

variability in movement is important in many sport skills, particularly those that require adaptability 

of complex motor patterns within dynamic performance environments. They suggested that a more 

variable movement pattern during the execution phase of a sporting skill may enable greater 

adjustment for intrinsic factors, such as confidence and fatigue, and extrinsic factors, such as wind 

and temperature, which may influence an athlete’s performance. This changing perspective was 

further supported by Taylor, Landeo and Coogan (2014) who suggested that functional roles, 

including facilitating consistent movement outcomes and adapting to changeable task and 
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environmental constraints, could be attributed to movement variability. In addition, Yang et al. 

(2018) showed elbow flexion variability and shoulder-elbow coordination variability were increased 

with fatigue during repeated task performance, but movement timing errors and endpoint spatial 

variability were mostly preserved. This led to a conclusion that increased variability with fatigue may 

play a role in preserving global task performance. 

 

1.3 Dynamical systems theory 

The idea of movement variability as a functional element of skill performance has its groundings in 

dynamical systems theory. Although originally developed as a way of mathematically modelling 

relatively simple systems, such as the two coupled variables in a double pendulum (De Bot, Lowie 

and Verspoor, 2007), when applied to a human being it becomes a model for interpreting complex 

systems based on a set of general principles (Thelen and Smith, 1994; Van Gelder, 1998; Shanker and 

King, 2002).  

Dynamical systems theory aims to describe systems that are able to constantly adapt to the varying 

demands of a task (Williams, Davids, and Williams, 1999). This has clear links to areas of skill 

acquisition and motor control literature but has also developed to encompass elements of 

mathematics, physics, biology, psychology and chemistry, as well as the pioneering work of Russian 

physiologist and biomechanist, Nikolai Bernstein. Bernstein (1967) proposed that the human 

movement system is comprised of a large number of interacting components, all of which will 

combine to produce movement patterns through generic processes of self-organization and 

suggested that the fundamental task for movement systems is to go through “the process of 

mastering the redundant degrees of freedom”.  

The first application of Bernstein’s theory was reported by Arutyun, Gurfinkwl and Mirskii (1968) 

when investigating the strategies employed in shooting by skilled and unskilled marksmen. Their 

findings suggested that, contrary to the traditional view, skilled performers actually displayed 

greater levels of movement variability than their unskilled counterparts. These results were 

replicated later by Scholz, Schöner and Latash (2000) who hypothesised that higher levels of 

variability in the shoulder and elbow joints complemented each other to allow the wrist (and 

therefore gun) to maintain a stable position. Greater movement variability was interpreted as 

contributing to success in the task as the same high levels of variability were not seen in the 

shoulder and elbow joints of unskilled shooters, with the consequence that the pistol position 

remained unstable and therefore performance was inhibited. These studies essentially confirmed 
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Bernstein’s (1967) anecdotal evidence of novices typically appearing stiff and experts moving in a 

more fluid, unconstrained manner. According to Bernstein’s theory this was because the novices had 

removed more than just the redundant degrees of freedom and were no longer able to adapt to the 

requirements of the task. 

Another investigation, this time by Vereijken, Whiting and Newell (1992), also supported this 

difference between novice and expert athletes by explaining that, to become proficient in any skill, 

the learner must discover how best to coordinate their body movements in any situation. They 

suggested that, in the early stages of the acquisition of a movement skill, the complexity of the 

overall movement is reduced by an initial “freezing” of degrees of freedom, followed later in the 

learning process by the release of these degrees of freedom and their incorporation into a dynamic, 

controllable system.  

The model of investigation conducted by Scholz, Schöner and Latash (2000) has since been adapted 

into a range of sport and exercise settings in order to challenge the traditional assumption of 

invariant movement patterns for skilled performers. In the early 2000s this included papers relating 

to Basketball (Miller, 2002; Button, Macloed, Sanders and Coleman, 2003 and Robins, Wheat, Irwin, 

and Bartlett, 2006), Triple jump (Wilson, Simpson, Van Emmerik and Hamill, 2008), Cricket fast 

bowling (Peterson, Pyne, Portus, Karppinen and Dawson, 2009), Golf (Knight, 2004; Bradshaw et al., 

2009; Glazier, 2011; Langdown, Bridge, and Li, 2012 and Tucker, Anderson and Kenny, 2013) and 

Water Polo (Taylor, Landeo and Coogan, 2014).  

A number of the examples shown above concluded that, from a dynamical systems perspective, 

variability may play a functional role in a number of ways. Far from being a marker of poor 

performance, the suggestion is that movement variability is a form of “essential noise” (Davis, 

Shuttleworth, Button, Renshaw and Glazier, 2004), which can perform a number of functional roles. 

These functional roles include enhancing postural control, aiding the exploration of stability 

boundaries, transitions between movement patterns and producing a more consistent sporting 

outcome despite the altering demands placed on the performer (Van Emmerik, Hamill and 

McDermott, 2005). This, in turn, should allow skilled performers to adapt their movement patterns 

to the changing constraints of a given task in order to produce a similar outcome despite altered 

conditions. 

Despite this body of evidence, and the huge amounts of available literature focussing on any number 

of other elements within cycling (see Section 2.2), it is somewhat surprising that there appears to 

have been little research conducted in this sport using either the dynamical systems theory 
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approach or with the aim of identifying the role of movement variability. Dynamical systems theory 

seems to be ideally suited to application within the continuous, multijoint nature of the cycling task 

(Hug, Drouet, Champoux, Couturier and Dorel, 2008) and, in addition, the ability to efficiently adapt 

pedalling technique to match the changing task perturbations which may be encountered 

throughout a prolonged cycling event seems like an inherently useful ability. Theoretically, a degree 

of movement variability could allow cyclists to better maintain consistent outcome measures (e.g. 

power output, velocity or event finishing time) throughout their performance. This fits nicely with 

the traditionally held view that “better” performers are more consistent and has been shown to be 

especially important if the task requires adaptability of complex motor patterns within dynamic 

performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006).  

The interpretation of movement variability as a positive is conspicuously absent from the field of 

cycling, as is the use of dynamical systems theory to better understand the underlying motor 

control/learning processes at play. Therefore, the aim of this thesis is to investigate whether 

movement variability has a functional role to play within a number of aspects of cycling and if skilled 

performers are employing more variable movement strategies in the same way as has been 

suggested in other sports. Wilson et al. (2008) stated that a key component in analyses of movement 

variability should be exactly this: The examination of the role of variability within the system under 

investigation. They also suggested that determining whether this variability is beneficial is a difficult 

task, but it is hoped that this line of study will allow the author to challenge, once again, the 

traditional view that movement patterns for skilled performers are invariant.  

If, as hypothesised, it is discovered that the cycling system (i.e. rider and bicycle) does benefit from a 

level of intra-individual movement variability, there are a number of possible applications. Firstly, it 

becomes evident that the 10,000 hours rule which gained such popularity could still be applicable to 

sport if improvement is judged by the cyclist having greater variability in their movement patterns, 

and therefore greater adaptability in their technique, rather than their ability to perform a single 

“correct” technique. From this perspective the 10,000 hours of focussed practice which Gladwell 

recommended becomes less about the time spent practicing and more about the range of 

conditions, settings, environmental factors and other perturbations that the athlete experiences 

during those hours. This, in turn, could be used to influence coaching practice/training approaches 

with the emphasis being removed from trying to develop a single “correct” technique and instead 

the focus being on experiencing as many combinations of task constraints as possible. This would 

reflect the findings of Knight (2004) who suggested that golfers may be able to develop a more 

reliable swing by exploring different movement patterns, rather that attempting to perform each 
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swing with absolute invarience and Bradshaw, Maulder and Keogh (2007) who stated that it could be 

more beneficial to place athletes in a multitude of scenarios which offer a range of different task 

demands. 

 

Applying the dynamical systems approach, as advocated by Davids, Glazier, Araujo and Bartlett 

(2003), could encourage those athletes who are capable, to develop a range of movement patterns 

and give them opportunity to learn a variety of possible solutions. This would promote coordinative 

adaptability (Bradshaw et al., 2009), which should allow them to produce a consistent performance 

outcome despite the variable conditions or demands. Indeed, there is a growing body of literature, 

for example Wu et al. (2012) and Moreno and Odoño (2015), advocating the use of variability in 

training from a motor learning perspective for exactly these reasons. 

 

The second potential application of this PhD is in the area of Injury reduction/avoidance. Kurz, 

Sterigou, Buzzi and Georgoulis (2005) showed that movement variability may play a functional role 

in reducing injury through variable loading of the musculoskeletal features of the joint during gait. If 

it is proven that an amount of intra-individual movement variability can perform the same role 

during cycling as well as providing the flexibility to be able to adjust to changing environments 

(Bartlett et al. 2007), then this has implications for those participating in at all levels of the 

participation spectrum. For those cycling at the competitive end of the sport, a reduction in the 

occurrence of injuries should result in greater competitive performance and a more predictable 

adherence to training structures. For those engaging in cycling as a low impact mode of physical 

activity, and any associated exercise professionals, this would also suggest a level of confidence 

when trying to increase levels of activity as this can be done without concerns about variable 

movement patterns causing injuries. 

1.4 Aims and Hypotheses 

Despite evidence of kinetic, kinematic and electromyographic changes in cycling technique in 

response to differing task constraints (see section 2.3), there has been very limited investigation into 

the potentially functional role of this intra-individual movement variability within cycling events. 

With the exception of two published papers (Christiansen, Bradshaw and Wilson, 2008 and Sides and 

Wilson, 2012) this area has been overlooked in the published literature and, as such, represents a 

novel area of study for this thesis to explore.   

As a result, the aim of this thesis was to answer the question of whether intra-individual movement 

variability may play a functional role in cycling performance by allowing cyclists to better react to 
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changing task constraints throughout a cycling event. The thesis was specifically designed to address 

the following research questions: 

i) Do more experienced cyclists employ differing levels of intra-individual movement variability 

compared to their less experienced counterparts? 

ii) Does a greater level of intra-individual movement variability have an effect on cycling 

performance? 

 

An initial hypothesis was that more experienced cyclists would show greater levels of intra-individual 

movement variability than their less accomplished counterparts, showing that movement variability 

performs a functional role within cycling and is not a marker of poor motor control as has been 

traditionally thought. More specifically, it was thought that better performing cyclists would be able 

to adapt more readily to changing task constraints encountered during a cycling event and would 

therefore display greater levels of movement variability between successive measurement points 

throughout the duration of a time trial. 

1.5 Experimental overview 

The investigation of these research questions was conducted through a series of experimental 

investigations which were designed using a post positivist approach and, accordingly, focus largely 

on quantitative methods of data collection and analysis, while not discounting the input of the 

qualitative information provided by participants. 

Accordingly, Study 1 demonstrates a highly controlled, laboratory-based investigation with 

movement variability being measured at a number of points throughout a simulated ten mile (16km) 

cycling time trial event. 

In order to then move investigations into a more ecologically valid, field-based setting, it was 

important to conduct a number of validation exercises. Study 2 investigated the validity of PowerTap 

P1 pedals as a potential method of measuring cycling power output compared to a previously 

validated measurement technique in the form of a cycle ergometer. Similarly, Study 3 investigated 

whether skin mounted electro-goniometers are a suitable method for replicating the calculations of 

continuous relative phase performed in Study 1, without relying on the traditional methods of 

kinematic data collection, which pose huge methodological challenges when studying cycling (see 

Section 2.5.2).  

The two subsequent studies followed a similar theme as an inertial measurement suit (Study 4) and 

individual inertial measurement units (Study 5) were also assessed in comparison to traditional 
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methods of kinematic data collection. Having established a valid method for recording kinematic 

measures of joint coupling behaviours (Study 5), investigations were then able to move to a field-

based setting (Study 6). 

In Study 6, participants were required to complete a time trial effort over a standardised 10 mile (16 

km) outdoor course, which was chosen due to the variable nature of the terrain and, more 

specifically, the presence of two significant climbs. Measures of movement variability were taken at 

seven successive points across the time trial to allow investigation into how participants reacted to 

changing task constraints.      

Having focussed largely on kinematic measures of movement variability during Studies 1–6, 

investigations then returned to the controlled setting of the laboratory to investigate muscular 

recruitment patterns during time trial performance (Study 7). This was designed to help better 

understand the underlying mechanisms that may lead to increased levels of movement variability 

and required participants to complete a simulated 10 mile (16km) time trial on a cycle ergometer. As 

with Studies 1 and 6, measurements were taken at successive points throughout the time trial in an 

effort to ascertain whether any changes in muscular recruitment patterns occurred which could be 

attributed to changing task constraints (i.e. greater levels of muscular fatigue) throughout the cycling 

event.   
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2. REVIEW OF LITERATURE AND METHODS 

2.1 Motor control and skill acquisition 

As outlined above, the focus of this thesis is to identify the role of intra-individual movement 

variability during performance of a cycling event. However, before focussing on complex sporting 

skills such as cycling, it is important to understand not only how human movements are produced 

and controlled but also how they are learned and developed. Herein lies the basis of the parallel 

fields of motor control and motor learning. Schmidt, Lee, Winstein, Wolf and Zelaznik (2018, p. 21) 

outlined that, although these fields have emerged from the separate areas of motor behaviour and 

neurophysiology, and remained largely separate until the 1970s, there has been a combining of 

ideas, problems and methods which means there is now little benefit in discussing them separately 

due to their inherently interconnected nature. As such, this chapter aims to give a brief overview of 

the field of motor control and motor learning, while highlighting some important theoretical 

approaches and key frameworks encountered in each area. 

The majority of contemporary motor control and learning literature can be classified into one of two 

groups: those which follow the ideas of self-organising systems and those which are grounded in 

motor programme concepts (Magill and Anderson, 2010). This division seems somewhat arbitrary as 

it has been observed that, although motor control strategies can be grouped and isolated for study, 

they don’t function independently, with both sensory input and autonomous control being 

responsible for a resultant movement pattern (Cruse, Dean, Heuer & Schmidt, 1990). Instead, this 

division could be in reaction to one major challenge when attempting to understand the 

mechanisms of human movement: the sheer variety of skills which we are able to perform. There 

has been some suggestion that the way varying levels of sensory input and autonomous function are 

controlled in discrete skills seem to be different to those methods required for continuous skills 

(Schmidt, Lee, Winstein, Wolf and Zelaznik, 2018) and Keele (1998) held the view that the division of 

research into two groups “is due less to competing conceptualisations of the same phenomena than 

to the kinds of phenomena with which different groups of investigators are concerned” (p. 403).  

Keele (1998) suggested that there was a tendency for researchers who use a self-organising system 

approach to focus on “continuous, often rhythmical skills of longer duration” whereas the motor 

programme approach is more widely applied to “discrete skills of short duration, where planning 

and motor programming seem to be critically important and feedback-based adjustments do not”. It 

is worth noting, however, that the problems encountered when trying to understand both discrete 

and continuous tasks share many similarities and therefore it is worth briefly explaining both 

approaches in order to give a greater contextual grounding. 
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2.1.1 Motor programme concepts 

Researchers who espouse the idea of a motor programme concept suggest that the central nervous 

system holds a predetermined set of instructions for how each movement is performed. A motor 

programme was defined by Keele (1968) as “a set of muscle commands that are structured before a 

movement sequence begins, and that allows the sequence to be carried out uninfluenced by 

peripheral feedback.” This idea of an “open-loop” system (Schmidt & Lee, 2018) means that once 

the action is completed the lack of feedback input limits adaptation based on the outcome of the 

previous performance, so each individual movement requires its own unique set of instructions or 

motor programme. The idea of a centrally held motor programme has been challenged by a number 

of authors (MacNeilage, 1970; Schmidt, 1975; Turvey, 1977; Morris, Summers, Maytas & Iansek, 

1994; Summers & Anson, 2009), with consistent concerns being raised around the ideas of 

programme storage and programme novelty. 

In simple terms, the “storage problem” (Schmidt, 1975) relates to the idea that if an athlete were to 

create a unique motor programme for each individual movement and store each of these in the 

long-term memory, then this would require the athlete to somehow maintain a store of countless 

millions of individual programmes. Each programme would then need to be almost instantaneously 

recalled at will in order to perform a given movement pattern. The scale of this problem was 

demonstrated by MacNeilage (1970) who focussed only on the movements required to create 

human speech and suggested that this alone would require in the region of 100,000 unique motor 

programmes in order to produce all the required sounds. He also noted that this estimate did not 

account for regional accents or slang variants of common words which would undoubtedly increase 

the required number of motor programmes required. 

The second concern with the motor programme notion is referred to as the “novelty problem” 

(Schmidt, 2003) and is concerned with the degree to which a motor programme is, in fact, unique. 

An often-cited quote from Sir Frederick Bartlett (1932) demonstrated an early awareness of this 

problem when he reportedly observed that during tennis “When I make a stroke, I do not, as a 

matter of fact, produce something absolutely new, and I never repeat something old” (Wagoner, 

2013). This, in essence, is the issue raised with motor control programmes in that the performance 

of a skill will be based on the previous learning but will be slightly different each time and therefore 

would, under the strict definition of a motor programme, require a unique motor programme to be 

developed and stored. 

In 1975, Schmidt attempted to address both the storage and novelty concerns when he proposed his 

Schema theory. This introduced the idea of a Generalised Motor Programme which proposed that, 
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instead of having a unique motor programme for every movement, a set of general rules can be 

applied to a “class” of movements which have consistent features. The most important consistent 

features were quickly confirmed in terms of the overall duration (Shapiro, 1977), overall force 

(Hollerbach, 1978) and the muscles involved (Shapiro, 1977) and were often demonstrated using the 

example of handwriting tasks to show how there are common features in multiple performances of 

a task, despite different constraints being placed upon it (Raibert, 1977; Hollerbach, 1978). 

Schmidt’s (1975) theory proposed that, when learning a skill, applying general rules to govern the 

movement means an individual can either generate a Generalised Motor Programme based on the 

important consistent features mentioned above or adapt an existing one, depending on how much 

prior experience the individual has. Despite this potentially reducing both the problems of novelty 

and storage which were seen with the previous motor programme concept, Schmidt et al. (2018) 

noted that Generalised Motor Programmes have been examined consistently since their 

introduction with some notable concerns being raised (p.209). 

As acknowledged by Schmidt himself (2003), schema theory is almost completely focussed on how 

the athlete learned to scale and adjust a Generalised Motor Programme. It never offered answers to 

the question of how such a programme was acquired in the first place. In addition, a contentious 

issue highlighted by Schmidt et al. (2018) with regards to Generalised Motor Programmes was that 

of invariance. Their observations centred around the idea that if there are deviations between the 

individual performances of a skill, especially when concerned with the relative timing of the skill, 

then are these deviations meaningful? And what constitutes a meaningful deviation? This is clearly a 

line of questioning that is extremely relevant to the current thesis and is examined in greater depth 

throughout this thesis. 

2.1.2 Self-organising systems concepts 

Traditionally viewed in opposition to the concepts discussed above, the self-organising system 

approach suggests that the motor programme view places too much emphasis on the brain’s 

capacity to pre-plan movements and insufficient emphasis on the dynamics of motor control (Morris 

et al., 1994; Summers & Anson, 2009). This approach contends that movements are not pre-

specified by centrally located motor programmes but, instead, that the evolution of movement 

patterns occurs as a natural consequence of the dynamic interactions of the central nervous system, 

the effectors, the environment and the task at hand. 

The earliest distinct example of this approach can be seen in Adams’ (1971) theory of a “closed loop” 

system which suggests that, unlike the “open loop” system discussed earlier, feedback from one 
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performance of a task can be built into the plan for the next performance of the task or, critically, 

used to adjust performance within a continuous task. Indeed, Schmidt et al. (2018) noted that 

closed-loop systems are especially important in situations where a system is required to “control 

itself” for long periods of time (p.129).  

However, as with the models discussed above, which suggest that the management of a movement 

is handled by direct commands from higher centres, the idea of a closed loop is not without its 

detractors. Bernstein (1967) suggested that if each individual decision about movement was 

undertaken at the brain level, then the sheer amount of mental processing required to perform even 

simple tasks would be prohibitive. Bernstein explained that a movement system has “too many 

independent states that must be controlled at the same time”, which he referred to as degrees of 

freedom. Because each joint has a number of muscles acting on it, and each of these muscles is 

made up of hundreds of motor units that also must be controlled, Bernstein suggested that the 

number of independently moving parts would lead to an impossible situation for the central nervous 

system if it had to control these degrees of freedom individually via conscious decisions. 

Bernstein’s work has been cited by many (Brooks, 1986; Keele, Cohen & Ivry, 1990; Schmidt, 1988) 

as an underpinning for the General Motor Programmes (GMP), discussed above, as GMPs would be a 

way of reducing the number of degrees of freedom that the system would contain by requiring only 

the selection of the correct GMP. This is because a GMP would have the capability to influence the 

activity of the many independent degrees of freedom so that they act as a single unit. In other 

words, it is suggested that the brain controls the selection of a GMP and initiates it at the proper 

time, but the programme controls the activity of the individual degrees of freedom involved in the 

movement, freeing up the brain once the movement starts. This suggestion, although very neat, has 

been criticised for not answering the question of control as the exact mechanism of how the various 

degrees of freedom are coordinated remains unexplained by this model (Schmidt et al. 2018).  

Beek, Peper and Daffertshofer (2002) cited the investigation of such coordination as having roots in 

a seminal paper by Kelso (1981). Kelso observed that if an individual is instructed to cycle their index 

fingers rhythmically in antiphase while gradually increasing the frequency of movement, an 

involuntary switch to an in-phase pattern occurs at a certain, predictable, critical frequency. This 

observation prompted the creation of the Haken-Kelso-Bunz (HKB) Model (1985) which presented a 

theoretical model for this phase transition and referred to the spontaneous formation of movement 

patterns and pattern changes in a system composed of many components that is open to the 

exchange of information with its surroundings. In doing so, the HKB model (1985) provides the basis 

of all models which espouse the belief that human movement is a self-organising system. 
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The HKB model has been cited as probably the most extensively tested quantitative model in the 

field of human movement behaviour (Fuchs & Jirsa, 2008) because it was the first to propose that 

human movement patterns are self-organised, dynamic systems. It has been used as a building block 

upon which numerous investigations into varying movement patterns have been based (Kelso & 

Jeka, 1992; Carson, Goodman, Kelso, & Elliott, 1995).  

Despite these successes, however, certain shortcomings of the HKB model have also become 

apparent. Beek et al. (2002) identified that the evolution of the HKB model into a “fundamental 

formal construct for the experimental study of rhythmically coordinated movements in general” has 

left it with questionable validity with regard to the assumptions surrounding individual limb 

movements only having two active degrees of freedom as well as to the proposed coupling between 

them. In addition, Sporns and Edleman (1993) identified that traditional methods of studying motor 

control, such as the HKB model, struggle to allow for the high levels of adaptability and flexibility 

displayed by movement systems when faced with changing biomechanical properties of motor 

organs during development and when faced with different environmental conditions or tasks.  

As such, there are a range of self-organising systems approaches to studying motor control which 

are increasingly incorporating dynamical systems theory. Dynamical systems theory is a 

multidisciplinary approach which encompasses elements of mathematics, physics, biology, 

psychology and chemistry to describe systems which are able to constantly adapt to the varying 

demands of a task (Williams, Davids, and Williams, 1999) and represents, in a way, a logical 

extension of the HKB model in an effort to overcome some of the cited shortcoming of the original 

self-organising systems approach.  

2.1.3 Summary 

Having outlined some of the key developments in both the self-organising systems approach and the 

concept of motor programmes, it is difficult to argue against Keele’s (1998) suggestion that these 

two schools of thought do not, in fact, seem to be separate ideas and that they should be viewed 

more as complementary aspects of the same field.  

For example, an initial suggestion when embarking on this PhD investigation was that more 

accomplished athletes may have developed a “library” of movement patterns which are capable of 

coping with various perturbations of psychological, physiological and mechanical demands. The 

storage and novelty problems bring into question the degree to which this is possible and also how 

much each of these movement patterns is different, but this only strengthens the suggestion that 

GMPs may exist and are governed by a schema which is developed over time.  
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In contrast, Bernstein (1967) suggested that that human movement is not governed by a set of 

motor programmes and instead is a self-organising system. This gave rise to his idea that the 

organised practice involved in becoming more adept at a given activity is not about learning a series 

of “correct” motor programmes, it instead trains the athlete to become more efficient at solving the 

degrees of freedom involved in the particular combination of task constraints faced at the time. This 

would allow the athlete to dynamically created a stable movement solution sooner and therefore 

adapt to the changing demands of a task more quickly. 

Regardless of which of these is true, it is undeniable that both require an athlete to employ some 

sort of feedback mechanism in order to select the appropriate motor programme or to dynamically 

adjust their movement pattern to match the particular combination of variables/inputs they are 

faced with during the ongoing performance of the skill. Given that the focus of this PhD is cycling, a 

continuous task, this appears to link more closely to self-organising systems concepts which would 

allow feedback to play a role in the adaptation of movement patterns throughout a ride in response 

to changing conditions.  

This, therefore, will be the main theoretical standpoint adopted throughout this thesis. Movements 

will be viewed as dynamically created patterns which emerge organically through the interaction 

between the cyclist and the task constraints they face. The cyclist’s ability to adapt to those task 

constraints and efficiently solve the degrees of freedom problem will be viewed as a mark of 

expertise with invariant outcomes being prized over invariant movement patterns.   
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2.2 Cycling literature 

Having discussed the various ways in which it has been theorised that movements are learnt and 

controlled, there is a temptation here to move on to the sport of interest and try and somehow 

summarise all the published biomechanical cycling literature. Not only has this been done by 

numerous authors already (see Gregor, Broker and Ryan, 1991; Fonda and Sarabon, 2010; Hopker 

and Jobson, 2012; Bini and Carpes, 2014), to try and replicate the total combined knowledge of 

multiple textbooks here is well beyond the scope of a PhD thesis.  

Instead, the aim of this chapter is to summarise the most prevalent measurement techniques and 

reporting conventions so that they can be followed throughout the coming investigations.  

2.2.1 Phases of a pedal revolution 

Regardless of the purpose of a cycling study, it is useful for authors to be able to compare the data 

they record by identifying specific times or events during the pedal revolution. The most common 

way this is achieved is by denoting the start of each revolution as the point at which the pedal is in 

its highest possible position with the crank positioned vertically (Faria and Cavanagh, 1978; Wozniak-

Timmer, 1991; So, Ng and Ng, 2005; Wilson and Bush, 2007; Sides and Wilson, 2012; Bini and Carpes, 

2014; Bartaguiz, Dindorf, Dully, Becker and Frohlich, 2023). Having established a zero point, any 

event throughout the pedal revolution can be described in terms of how many degrees rotation 

have occurred relative to that standardised starting position. This approach is akin to that which was 

recommended by Lamb and Stöckl (2014) and Kurz and Stergiou (2002) and allows not only 

standardisation of each revolution in terms of data points but also gives the opportunity to report 

events relative to a percentage of a pedal revolution. 

Having established a standardised frame of reference for the pedal revolution, the cyclic motion of 

the pedal is typically divided into different phases, largely dependent on the action being performed 

at the time. The simplest of these divisions is a crude two-phase split whereby any movement that 

occurs from 0°–180° is considered part of the “power” phase and the remaining arc from 180° –360° 

is labelled as the “recovery” phase (Faria and Cavanagh, 1978).   

This simple division has been further developed to acknowledge the presence of “dead centres” at 

the top and bottom of the crank revolution (So, Ng and Ng, 2005). These events during the crank 

rotation occur at approximately 0° and 180° and denote points where applying a vertical force to the 

pedal will not result in a rotation of the crank and, instead, a tangential force is required to continue 

crank progression (see Figure 2-1). 
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Figure 2-1. Phases of the pedal revolution 

(Adapted from So, Ng and Ng, 2005) 

 

Following greater investigation into both the kinetics and kinematics of crank rotations, this two-

phase split with an acknowledgement of top and bottom dead centres has been further divided so 

that the crank revolution is now, typically, viewed in four quarters. Unlike the simple two-phase split 

shown above, there is some inconsistency within the literature as to the exact start and finish 

position of each “quarter”. Some authors divide the revolution much like a clock face (Bini and 

Rossato, 2014; Carpes, Bini and Quesada, 2014) with the 1st quarter running from 0°–90°, the second 

from 90°–180°, the 3rd from 180°–270° and the 4th and final quarter completing the revolution from 

270°–360°. One potential issue with this division is that there are a number of features which have 

been observed within the crank revolution (e.g. tangential force application to overcome top dead 

centre) which would, under these definitions, span a quarter boundary. As a result, other authors 

have adopted a quarter split which is rotated by some 30° (Dorel, Couturier and Hug, 2009; Dorel et 

al., 2009; Lanferdini, Jacques, Bini and Vaz, 2014). This ensures that the influence of both the top 

and bottom dead centres are contained within single phases at the top and bottom of the rotation 

while the remaining phases more closely align with the pattern of pedal force application identified 

in numerous studies (Soden and Adeyefa, 1979; Peiffer and Abbiss, 2010; García-López, Díez-Leal, 

Ogueta-Alday, Larrazabal and Rodríguez-Marroyo, 2016).    
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2.2.2 Kinetic data 

Since the pioneering work of Hoes, Binkhorst, Smeekes-Kuyl and Vissers (1968) and Soden and 

Adeyefa (1979), who were among the first to measure the forces applied to a bicycle, there have 

been many developments in bicycle components in order to minimise resistive forces and the energy 

cost of pedalling in order to improve performance (Minetti, Pinkerton and Zamparo, 2001). Peiffer 

and Abbiss (2010) suggested that, despite these developments, changes to the drive train of the 

bicycle (chain, gears, and crank) have been relatively non-existent and that the biomechanically 

measured “dead” spots within the normal pedal stroke still occur. This means that the majority of 

torque is produced with the crank parallel to the ground (90°), with very low or zero forces produced 

at crank positions of top dead centre (0°) and bottom dead centre (180°).  

This quasi-sinusoidal power output has been widely reported (Ericson, 1988; Stapelfeldt, Mornieux, 

Oberheim, Bellia dn Gollhofer, 2007; Bini, Hume and Cerivi, 2011) and various laboratory-based 

instruments have been developed to aid in producing such measurements (Hull and Davis, 1981; 

Newmiller, Hull and Zajac, 1998; Alvarez and Vinyolas, 1996; Dorel, Drouet, Hu, Lepretre and 

Champoux, 2008).  

The result of these investigations is that a coherent picture of a “typical” pattern of power output 

has been established and can be seen in Figure 2-2. 

 

Figure 2-2. Typical force application throughout a crank revolution 

(Adapted from Rossato, Bini, Carpes, Diefenthaeler and Moro, 2008). 
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This pattern clearly shows a period of negative force which effectively decelerates the pedal and is 

somewhat at odds with the statement by Bini and Carpes (2014) that the aim of cyclists is to 

continuously produce maximal power output so that this can be transferred to the cranks and be 

translated into bicycle speed. The pattern displayed in Figure 2-2 has also been shown to be affected 

by a number of factors including workload (Bini and Diefenthaeler, 2010), cadence (Bini, 

Tamborindeguy and Mota, 2010), body position (Diefenthaeler et al., 2006) and fatigue (Amoroso, 

Sanderson and Henning, 1993). Most relevant to this thesis, however, are the differences that may 

be seen when recruiting cyclists of differing skill/experience levels.   

Although some textbooks have stated that professional cyclists have better pedalling technique than 

recreational cyclists (Broker, 2003; Cavanagh & Sanderson, 1986), there are conflicting results from 

experimental studies (Sanderson, 1991; Sanderson, Hennig, & Black, 2000). Coyle et al. (1991) 

observed that elite cyclists applied higher force during the downstroke than sub-elite cyclists, but 

sub-elite cyclists had higher pedal force effectiveness. In contrast, other studies have shown higher 

pedal force effectiveness in elite cyclists than non-cyclists (Mornieux et al., 2008). In both studies, 

elite cyclists applied higher resultant force and effective impulse during the downstroke phase than 

sub-elite and non-cyclists, respectively. This could mean a less effective pedalling technique for the 

elite cyclists if it is assumed that a constant application of power is desirable. 

One area of particular interest for this thesis, which appears to be largely absent from the published 

literature, is not whether this pattern of force application is different between different levels of 

cyclist but whether the amount of variance from one crank revolution to another varies with 

differing levels of experience. This discussion will be revisited in Section 2.3.2 of this thesis. 

 

2.2.3 Kinematic data 

When it comes to kinematic data, the most common method of motion analysis within cycling has 

been to focus on the movement of the lower limbs (Enoka, 2000). This analysis has typically been 

limited to the sagittal plane (Ferrer-Roca, Roig, Galilea and Garcia-Lopez, 2012; Carpes et al., 2006) 

due to this being the plane in which the largest ranges of motion are seen. 

It has been established that cycling is unusual in that the range of motion seen at the hip, unlike in 

other forms of exercise or activity, occurs with the hip always in a position of flexion. For example, 

the hip extends beyond straight by approximately 35° and flexes about 25° during moderately fast 

running (Cavanagh, 1986), creating a total range of motion of approximately 60°. In contrast, during 
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cycling the range of motion displayed is around 42°–44° (Bini, Senger, Laferdini and Lopes, 2012) and 

takes place without ever reaching a point of extension.   

Likewise, the knee joint, despite having a total sagittal plane range of motion of approximately (73°–

78° (Bini, Senger, Laferdini and Lopes, 2012), never reaches full extension during cycling (Wozniak-

Timmer, 1991). Cavanagh and Sanderson (1986) found mean values of 37° knee flexion at 180° in the 

pedalling cycle and 111° flexion at the 0° crank position. These range of motion values are obviously 

participant-specific, with Houtz and Fischer (1959) having reported much lower values previously 

(~40°–65° total knee motion), but will also be affected by bike configuration and rider body position. 

It has also been shown that these typical ranges of motion will also change as riding conditions 

change, such as during hill climbing (Arkesteijn, Jobson, hopker and Passfield, 2013) and when the 

cyclist pedals while out of the saddle (Wozniak-Timmer, 1991), which would suggest a level of 

functional movement variability being present within cycling technique.  

In terms of ankle motion during cycling, Houtz and Fischer (1959) indicated that maximum 

dorsiflexion occurred at a similar time to maximum hip and knee flexion (~337°–23° crank position) 

and maximum plantar flexion occurred just past the 180° crank position. These values were 

somewhat confirmed by Cavanagh & Sanderson (1986) who suggested that the heel should be 

dropped during the 330°–30° position, and the toes should drop (plantar flexion) across the bottom 

part of the pedalling cycle; however, there is some debate as to how often this range of motion is 

actually adopted in the field. Kautz, Feltner, Coyle and Baylor (1991) suggested that this can be 

largely dependent on the intensity that the cyclist is performing at when measurements are taken. 

They found that their participants (14 elite male cyclists who completed 40-km time trials in an 

average of 55.8 min ± 2.9 min) displayed two approaches to coping with the demands of increased 

workload. Seven of their participants, when pedalling at higher workloads, adopted a more 

dorsiflexed position throughout the downstroke and applied a greater horizontal force to the pedal 

around the bottom dead centre position. The other seven participants, however, showed no changes 

in foot/pedal orientation. 

The increase in ankle range of motion shown by some participants throughout the pedal revolution 

is referred to as “ankling” (Wozniak-Timmer, 1991) and was thought to allow the cyclist to “push” 

the pedal through the top dead centre with the foot in the dorsiflexed position and “pull” across the 

bottom dead centre with the foot plantarflexed (Faria and Cavagnah, 1978). Cavanagh and 

Sanderson (1986) concluded, however, that the ankling pattern described above is “anatomically 

and mechanically impossible if the rider remains in the seat”.  
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This conflict of opinion may be partly responsible for the varied values reported when it comes to 

ankle range of motion. For example, Cavanagh and Sanderson (1986) approximated total ankle range 

of motion to be around 50°, where Bini, Senger, Laferdini and Lopes (2012) reported much smaller 

values, in the region of 21°–25°. It could be that there are two distinct pedalling techniques being 

demonstrated here or it could be interpreted as further evidence of movement variability and a 

change in technique in response to changing task perturbations.  

 

2.2.4  Muscular activation 

Assessment of muscle activation in cycling has been mostly conducted using surface 

electromyography (Bini and Carpes, 2014). This method was, to the best of the author’s knowledge, 

first adopted in cycling by Houtz and Fischer (1959) who studied 14 major surface lower limb 

muscles and stated that these muscles are activated in an orderly and coordinated way during 

cycling performance. Their ground-breaking work has been developed by numerous authors since 

then (Ericson, 1986; Jorge and Hull, 1986; Ryan and Gregor, 1992; Hug et al., 2004a; Hug et al., 

2004b; Duc et al., 2006; Hug et al., 2006a; Hug et al., 2006b; Dorel et al., 2007) and the muscles 

typically sampled are the Gluteus maximus, Rectus femoris, Vastus lateralis, Vastus medialis, 

Semimembranosus, Semitendinosus, Biceps femoris, Gastrocnemius lateralis and Gastrocnemius 

medialis, Tibialis anterior, and Soleus (Hug, Bendahan, Le Fur, Cozzone and Grelot (2004). 

Such extensive investigation has allowed the composition of normative data regarding the co-

ordination of muscular activity throughout the pedal stroke and this information has been published 

in table format (Ryan and Gregor, 1992. See Table 2-1) and adapted into more visual mediums such 

as those shown in Figures 2-3. 

Table 2-1. Typical patterns of muscular activation during cycling. 

(Adapted from Ryan and Gregor, 1992) 
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Figure 2-3. Overview of muscle activity timing during cycling. 

Here 1= Tibialis Anterior, 2 = Soleus, 3 = Gastrocnemius Medialis, 4 = Vastus Medialis and Lateralis, 

5 = Rectus Femoris, 6 = Biceps Femoris and 7 = Gluteus Maximus.  TDC = Top Dead Centre and BDC 

= Bottom Dead Centre. (Adapted from Fonda and Sarabon, 2010). 

 

The information displayed in Table 2-1 and Figure 2-3 led to the suggestion that that the most 

important muscle for cycling is the quadriceps (Schmidt, 1998) and that pulling up on the pedals 

largely depends on the hip flexors. Schmidt (1998) also stressed the importance of the smooth pedal 

stroke which allows an even distribution of power to the pedals during the course of the entire pedal 

revolution. As seen in section 2.2.3, whether this actually happens is debatable but it is a clear 

example of the interconnected nature of the various data types discussed in this chapter.  

As useful as diagrams such as Figure 2-3 can be for visualising the co-ordination pattern of muscular 

recruitment, they lack detail in terms of the pattern of activation which each individual muscle 

undergoes. Such detail was provided perhaps most clearly in a repeatability study undertaken by 

Hug and Dorel (2007) and replicated in their comprehensive review which followed (Hug and Dorel, 

2009). The “ensemble curves” that they created have been replicated in Figure 2-4.  
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Figure 2-4. Ensemble curves of muscular activation for 10 different lower limb muscles. 

(Adapted from Hug and Dorel, 2009). 
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To create the figure above, Hug and Dorel (2009) averaged the route mean square traces from 45 

consecutive pedal revolutions for each muscle and plotted them normalised against the maximal 

route mean square value obtained during the cycling bout. This clearly shows the typical pattern of 

activation each muscle displays when pedalling at a mean power output of 238 ± 23 W and 

demonstrates nicely that, with the exception of the Gastrocnemius Lateralis, there is one clearly 

defined peak of activation per muscle during each pedal revolution. 

As with the kinematic data discussed above, the typical patterns displayed by Hug and Dorel (2007) 

have been shown to change in response to varying workload (Macintosh, Neptune and Horton, 

2000), cadence (Sanderson and Amoroso, 2009; Candotti et al, 2009), body position on the bicycle 

(Savelberg, Van de Port and Williams, 2003) and fatigue state (Diefenthaler, Coyle, Bini, Carpes and 

Vaz, 2012; Dorel et al, 2009; Von Tscharner, 2002). For example, one strategy employed by both 

expert and novice cyclists when fatigued during a maximal intensity test was to adopt increased 

activation of gluteal muscles (Dingwell et al., 2008). 

Another example of how this typical activation may alter was demonstrated by Arkesteijn, Hopker, 

Jobson and Passfield (2013). They compared cycling on a treadmill with cycling on a turbo trainer 

and reported that treadmill cycling induced a larger muscular contribution from Gastrocnemius 

Lateralis, Biceps Femoris and Gluteus Maximus whereas using a turbo trainer resulted in a greater 

muscular contribution from Vastus Lateralis, Rectus Femoris and Tibialis Anterior. It is fair to 

question to what degree cycling on a treadmill accurately replicates the outdoor action, but the 

results suggest that muscular recruitment during cycling can be altered by the choice of ergometer. 

This, along with the other examples given here, could be interpreted as the cyclist altering 

technique, that is to say displaying a level of functional movement variability, in response to 

changing task constraints. This interpretation, however, is one that is largely absent from the 

collected cycling literature and is one of the reasons for the focus of this thesis. 

 

2.2.5 Summary 

As demonstrated throughout Section 2.2, cycling has been the focus of an extensive body of 

research. The collected knowledge has been summarised on numerous occasions in both review 

articles (Wozniak-Timmer, 1991; Jeukendrup and Martin, 2001; Faria, Parker and Faria, 2005; Ettema 

and Loras, 2009; Phillips and Hopkins, 2020; Turpin and Waiter, 2020) and textbooks (Hopker and 

Jobson, 2012; Bini and Carpes, 2014) and the various elements discussed above have been shown to 

be undoubtedly interconnected.  
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There is evidence throughout the collected literature that kinetic, kinematic and electromyographic 

changes in technique are evident in response to differing task constraints and that this could be 

interpreted as evidence of functional intra-individual movement variability. This interpretation, 

however, appears to be very seldom made within the literature with the idea that movement 

variability may be a hallmark of improved performance being almost entirely absent. This will be 

discussed further in Section 2.3. 

2.3 Movement variability in cycling 

As demonstrated in Section 2.2, cycling has been studied extensively with existing research covering 

a wide range of biomechanical topics. Evident within this body of literature is the assumption that 

individuals share a common optimal pattern of movement and the belief that a single most efficient 

technique exists for the majority of the population (Brisson & Alain, 1996; Cannon et al., 2007; Ostler 

et al., 2008; Ettema & Loras, 2009). This may offer an explanation into the relative lack of research 

on intra-individual movement variability in cycling, which will be explored further here. 

2.3.1 Muscular recruitment patterns  

The idea that individual cyclists move differently to each other (i.e. inter-individual movement 

variability) has only been established in relatively recent years with Hug, Bendahan, Le Fur, Cozzone 

and Grelot (2004) claiming that, prior to their study, the issue of inter-individual differences had 

never been addressed in detail. This is a questionable statement as earlier studies had reported a 

high variability of electromyographic patterns in trained cyclists (Ryan and Gregor 1992). Although it 

is worth noting that no other indication of the cyclist’s experience was given, Ryan and Gregor 

(1992) monitored EMG signals from ten lower extremity muscles over a range of cycling protocols 

and evaluated variability between participants by calculating the coefficient of variation (CV%) at 

10% intervals of the pedalling cycle. Their results suggested that the single-joint hip and knee 

extensors (Gluteus maximus, Vastus medialis, and Vastus lateralis) had the lowest CV% values (less 

than 30%) and attributed this to the role of these muscles as power generators. In contrast, 

variability was generally higher in the hamstring muscles with two distinct Biceps femoris patterns 

emerging across their 18 participants. This suggested that inter-individual differences of the EMG 

patterns were especially apparent for biarticular muscles compared to monoarticular ones but, 

interestingly, higher levels of variability were recorded in the first 20% of the pedalling cycle for all 

muscles studied.  

Hug et al. (2004) did somewhat confirm these results using surface EMG to determine the pattern of 

activity of lower limb muscles during two different pedalling exercises in eight professional cyclists. 

In this instance CV% values were as high as 81% and large inter-individual differences were seen 
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regardless of the muscle in question. Hug et al. (2004) expressed some surprise at these findings 

given the relative similarity of their participants in terms of oxygen consumption (V̇O2 max 73.6 ± 5.1 

ml·kg-1·min-1) and training volume being undertaken (30,000 ± 2,100 km·year-1) but nonetheless 

concluded that the similar expertise displayed by their participants did not manifest in the 

production of a common muscular recruitment pattern. They further suggested that their results 

provided evidence that the nervous system has multiple ways of accomplishing a given motor task. 

This is a viewpoint which echoes that of Van Bolhuis and Gielen (1999) who stated that, at the 

muscle level, there are multiple synergists as well as various combinations of agonist/ antagonists 

that can contribute to the same limb trajectory and force production. This is one of the main 

detractions from motor programme concepts of motor control which have been discussed in other 

areas of this thesis (e.g. Section 2.1) as it suggests that the nervous system could select a number of 

different muscle activation patterns to produce a given movement. In turn this has created an area 

of investigation to address questions around muscle load sharing, which originates from the fact that 

the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint. 

 

2.3.2 Pedal forces 

Despite the suggestion that, for a given power output and cadence combination, the effective force 

profile appears to be fairly typical across cyclists (Gregor et al. 1985; van Ingen Schenau et al. 1992; 

Sanderson et al. 2000), it has been suggested that substantial differences exist between participants 

regarding their power generation techniques (Gregor et al. 1991). Hug et al. (2008) aimed to assess 

this by investigating whether this was as a result of variability in pedal force application patterns to 

accompany their previously discussed variation in muscular recruitment. 

Hug et al. (2008) recruited eleven male experienced cyclists (8.5 ± 3 years of competitive experience 

with an average of 14,000 ± 4,333 km covered in training the previous season and a Maximum 

Aerobic Power output of 391.0 ± 22.3 W) and tested their participants at two submaximal power 

outputs (150 and 250 W). These tests consisted of a 10-min warm-up at 100 W followed by a 6-min 

task at a constant 150 W workload, immediately followed by a second test performed at 250 W for 3 

min. Throughout the whole protocol, participants were asked to maintain a constant pedalling rate 

fixed at 95 rev·min-1 (±5 rev·min-1). 

Immediate criticism could be levelled at this method due to the lack of condition randomisation and 

therefore the potential influence of fatigue. Hug et al. (2008), however, considered this protocol as 

non-fatiguing due to the trained status of the participants and the low workload level (i.e., 150 and 
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250 W representing about 38 and 63% of MAP, respectively). They also justified their choice of a 

fixed cadence, despite the findings of Bieuzen, Lepers, Vercruyssen, Hausswirth and Brisswalter 

(2007) and Emanuele, Horn and Denoth (2012) which advocate a freely chosen cadence, because 

their chosen cadence represented the mean pedalling rate (94.6 ± 4.2 rev·min-1) freely adopted by 

the participants at the end of the warm-up protocol. 

During their protocol, Hug et al. (2008) continuously measured pedal force components and index of 

mechanical effectiveness using instrumented pedals synchronized with surface electromyography 

signals measured in ten lower limb muscles. In agreement with Ryan and Gregor (1992) and Hug et 

al. (2004), this investigation, again, reported high inter-participant variability of EMG patterns at 

both exercise intensities for biarticular muscles and lower levels in monoarticular muscles. What is 

interesting, however, is that this was not accompanied by a requisite high inter-participant variability 

in pedal force application patterns. On the contrary, very low inter-participant variability was 

recorded in effective force, total force and index of mechanical effectiveness (variance ratios of 

0.017, 0.047, and 0.037 respectively at 150 W and 0.019, 0.059, and 0.088 respectively at 250 W) 

suggesting that there is a level of redundancy in the neuromuscular system. 

Ettema, Lorås and Leirdal (2009) also investigated a submaximal workload, adding the manipulation 

of cadence to produce five conditions ranging from 60—100 rev·min-1. Joint powers were calculated 

using inverse dynamics methods and other kinetic variables were calculated using four different 

computational models with only the cross-correlation model suggesting that there was a change of 

technique with increasing cadence. This shows some level of agreement with Hug et al. (2008) with 

regards low levels of variation of kinetic variables and can perhaps be attributed to the reasonably 

similar participant groups which both studies recruited with experienced competitive cyclists being 

investigated in both studies.  

DeMarchis, Schmid, Bibbo, Bernabucci and Conforto (2013) followed a similar line of investigation in 

that they aimed to study muscle coordination and connect it with the inter-individual variability of 

applied forces but, in contrast to the previous two papers, recruited untrained cyclists (less than 

50km cycling per year). Their nine participants performed a single, 2-min sub-maximal cycling task 

while maintaining a freely chosen pedalling cadence (64.5 ± 5.2 rev·min-1) and, in untrained 

participants, it would appear initially that there is a level of variability present in some force 

components. DeMarchis et al. (2013) did note, however, that this is only true when analysing the 

forces in the pedal reference system. When these forces are projected onto the crank reference 

system, most of the variability is reduced, suggesting that the propulsive action and the force 

orientation are both carried out similarly among untrained participants. 
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DeMarchis et al. (2013) went on to highlight the similarities between their findings and those of Hug 

et al. (2008) as both sample groups produced a negative torque during the second part of the 

pedalling cycle but also suggested that there may be a different strategy in the control of the 

tangential force in the recovery phase by elite riders when compared to untrained participants. This 

comparison is obviously difficult due to the different power outputs between the studied 

populations, since a higher power output could change the signal to-noise ratio, but suggests there is 

some merit to a comparison of the variability levels displayed by cyclists of differing abilities. 

2.3.3 Influence of skill level 

The comparison of novice versus elite athletes is a well-established research modality within the 

field of movement variability. Studies utilising this approach can be seen to study skill performance 

in basketball (Button, Macleod, Sanders and Coleman, 2003), triple jump (Wilson, Simpson, Van 

Emmerik and Hamill, 2008), golf (Bradshaw et al, 2009), handball (Wagner, Ptfusterschmied, Klous, 

Von Duvillard and Müller, 2012) and pistol shooting (Ko, Han and Newell, 2017) to name but a few, 

but this approach is less well established within cycling. The reasons for this may be due to some of 

the unique challenges when trying to classify a cyclist’s level of expertise (these will be discussed in 

Chapter 3).  

Chapman, Vincenzino, Blanch and Hodges (2008) demonstrated that patterns of leg muscle 

recruitment varied between novice and highly trained cyclists and then published a follow up paper 

a year later which attempted to ascertain whether this reflected less skilled muscle recruitment by 

novice cyclists or a different movement pattern being employed. Despite confirming their earlier 

findings that there were differences between novice and elite cyclists in the recruitment of leg 

muscles, Chapman, Vincenzino, Blanch and Hodges (2009) found that joint-angle and velocity were 

not different between groups when cycling at 55–60, 75–80, 90–95 rev·min-1 and preferred cadence. 

They did concede that there were some minor differences in the absolute range of sagittal plane 

motion of the ankle but coordination and variability of coordination of sagittal plane hip and knee 

motion, as well as frontal and transverse plane motions, were not different between groups. 

Showing a traditional and somewhat dismissive view with regards to movement variability, they 

concluded that the differences in muscle recruitment reflected less skilled muscle recruitment by 

novice cyclists and interpreted the slight kinematic variations between groups as further evidence of 

more skilled control of movement in elite cyclists who had progressed towards a more skilled 

movement pattern, despite these differences only being apparent in a single plane of ankle motion. 

Carpes et al. (2011) also reported muscular activity when comparing cyclists to non-cyclists but their 

aim was to investigate asymmetry of muscle activation in participants with different levels of 
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experience. Using both incremental and sub-maximal protocols they reported no difference in the 

magnitude of muscle activation between the preferred and non-preferred leg, in both cyclists and 

non-cyclists, despite seeing significantly higher gross efficiency in the cyclist group. They suggested 

that previous reports of pedalling force asymmetries in favour of the preferred leg during pedalling 

were therefore inaccurate and that cyclists appear to adopt a level of equality in muscle activation 

regardless of different levels of cycling skill. Despite these findings, they advocated further 

investigation into the influence of variability of muscle activation on pedalling asymmetry, 

something which may be considered in the later stages of this thesis.  

2.3.4 Inter-individual variability 

Despite the range of examples shown within Section 2.3, the focus of these studies is very much the 

variability between participants instead of the variability shown by one individual when faced with 

differing perturbations during the extended performance of a changeable task. In order to get closer 

to a measure of intra-individual variability it is valuable to consider studies which have used the 

same participants in a range of cycling conditions such as Smith, Davidson, Balmer and Bird (2001) 

who recorded power output during three indoor and three outdoor time trial events, using eight 

non-elite but competitive cyclists (V̇O2 max 5.11 ± 0.70 l·min-1).  

Smith et al. (2001) claimed that this was the first investigation into the reproducibility of mean 

power recorded during a field-based 40km time trial and this statement alone shows the focus of the 

paper, as with so much other sports science literature, was not on the intra-individual variability, but 

instead was trying to obtain a valid measure of performance between two conditions.  

In contrast, Bertucci, Grappe and Groslambert (2007) focussed on a comparison of crank torque 

profile and perceived exertion between the Monark ergometer (818 E) and two outdoor cycling 

conditions: level ground and uphill road cycling. They recruited seven male cyclists who were 

described as in their preparative training period for the race season and producing a Maximal 

Aerobic Power of 322 ± 40 W. These are, unfortunately, the only descriptive characteristics offered 

relating to the participant’s cycling expertise and therefore offer little in the way of benchmarking 

their experience. All participants completed seven tests in seated position at different pedalling 

cadences: (a) in the laboratory at 60, 80, and 100 rev·min-1, (b) on level terrain at 80 and 100 

rev·min-1; and (c) on uphill terrain (9.25% grade) at 60 and 80 rev·min-1. All tests were conducted for 

1 min at maximal aerobic power.  

Although the variability within each participant was not strictly the focus of this study, the findings 

that, at maximal aerobic power, the crank torque profiles when using a Monark ergometer were 
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significantly different to those seen in road cycling conditions could be interpreted to show that the 

participants were varying their movement pattern to match the particular set of constraints they 

were faced with in each condition, a central theme of dynamical systems theory. 

Similar inferences can be drawn from Kautz, Feltner, Coyle and Baylor (1991) who reported that elite 

endurance cyclists changed their pedalling technique when faced with an increasing workload at 

constant cadence, another change in the task constraints. The 14 male cyclists held U.S. Cycling 

Federation Category 1 or 2 status, had all recently placed in state and/or national level competitions 

and reported an average recent 40km time trial result of 55.8 min ± 2.9 min. Normal and tangential 

components of the applied force, crank orientation, and pedal orientation were recorded for 10 

consecutive crank revolutions while each participant was riding at approximately 60, 70, 80, 90, and 

100% of his respective V̇O2max and maintaining a cadence of 90 rev·min-1 at all times.  

Kautz et al. (1991) identified two techniques which the cyclists adopted to adapt to the increased 

workload. Seven participants showed no changes in pedal orientation but predominantly increased 

the vertical component of the applied force during the down stroke as the workload increased. In 

contrast, the other participants increased the toe up rotation of the pedal throughout the down 

stroke and increased the horizontal component between 0° and 90°.  

In addition, it was found that negative torque about the bottom bracket during the upstroke usually 

became positive torque at the higher workloads. This was a small increase with 96.3% of the total 

work done at high intensity still occurring during the down stroke but, again, suggests that the 

participants were displaying a level of intra-individual variability in order to adapt the changing task 

constraints.  

Likewise, Bini, Diefenthaeler and Moter (2010) reported changes in cadence, total absolute joint 

moment and hip, knee and ankle moments as a result of fatigue during cycling. This was 

accompanied by a change in resultant force and the altered kinematics were attributed to a different 

mechanical function at the ankle once participants reached a fatigued state. Bini et al. (2010) also 

suggested that this represented an attempt to overcome decreased contractile properties of 

muscles during fatigue, clearly suggesting that a new movement pattern was employed in reaction 

to a changing set of task constraints. 

Bini, Hume, Lanferdini and Vaz (2014) also altered the constraints of a cycling task by dictating that 

their participants ride in either a preferred/self-selected, most forward or most backward position 

on the saddle. Their participants were a mix of cyclists (n =12) and triathletes (n =9) who performed 
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a range of 1-min test protocols at 90 rev·min-1 in order to allow the assessment of force applied on 

the right pedal, lower limb kinematics and muscle activation with differing saddle positions.  

Their analysis showed no large effects from changes in position on the saddle for pedal forces, ankle 

joint work and ankle kinematics; however, there were large increases in knee joint angle and 

mechanical work and rectus femoris activation along with smaller hip work at the forward position 

on the saddle.  

2.3.5 Pacing strategies 

Although none of the studies discussed above specifically focus on variability they can be interpreted 

as a body of evidence which demonstrates cyclists using a range of different movement strategies 

depending on the task constraints placed upon them. That is to say, it could be used to argue that 

there is a level of intra-individual movement variability being shown in order to meet the demands 

of the task. One of the few areas of cycling where this intra-individual variability has been specifically 

investigated is when considering the pacing strategies which cyclists employ during an event. 

Atkinson, Peacock, Gibson and Tucker (2007) reviewed a number of articles which focussed on 

precisely this and concluded that an even distribution of power output across a time trial event is 

optimal, but only if the various factors governing the relationship between cycling power and speed 

are stable. If, in contrast, gradient or wind velocity vary, they suggested that a variable power 

strategy would be advantageous. Specifically, they suggested that increasing work rate in headwind 

and uphill sections and reducing work rate in the opposing areas would result in a decrease in the 

variability of speed and, therefore, improve overall finishing time. Despite the stated concerns about 

whether a variable power strategy such as this can be tolerated by elite cyclists, there is a clear 

suggestion here that a greater level of intra-individual variability (in terms of power output) would 

produce a more stable outcome measure which has long been seen as the trademark of skilled 

performance. 

Atkinson, Peacock, and Passfield (2007) went on to test the theory of a variable power output 

strategy by mathematically modelling time trial performances in order to quantify the time savings 

which could be made as a result. Although this was an entirely hypothetical investigation, a system 

comprising of a 70kg cyclist and a 10kg bicycle which was modelled to produce a power output of 

289W ± 10% was shown to make time savings of 126, 51, and 26 seconds on “hilly”, “windy” and 

“standard” time trial courses respectively when adopting a variable power output strategy. The 

authors concluded that this magnitude of time saving could be compared favourably to the 
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predicted benefits of interventions such as altitude training or ingestion of carbohydrate-electrolyte 

drinks suggesting that there is, indeed, a potentially functional role for variability within cycling. 

Seeking to go beyond a theoretical model, Thomas, Stone, Thompson, Gibson and Ansley (2012) 

conducted an investigation to assess the reproducibility of self-selected pacing strategies by 

recruiting seventeen well-trained male cyclists (V̇O2max = 4.70 ± 0.33 L·min-1) to perform three 20-km 

time trials on a Velotron Pro cycle ergometer. Their results suggested that the pacing strategy 

adopted was similar across trials but showed a higher degree of variability for the first and last 

kilometre. Given the impact that the start and finish phases of a relatively short time trial event can 

have on overall finishing time (Hettinga, De Koning, Broersen, Van Geffen and Foster, 2006), this 

may suggest some merit to further investigating whether the greater levels of variability shown in 

these phases have a positive effect in terms of performance. 

Although it could be argued that this discussion of pacing strategies displays support for a level of 

intra-individual variability within cycling, it does not strictly relate to movement variability. Here the 

unit of assessment is too big with either the entire event or a full kilometre within it being seen as a 

single performance of the skill in question. This focus is even more prevalent in work by Paton and 

Hopkins (2006) who reported the typical variation in competition times of elite cyclists in various 

race series. Their results suggested that elite cyclists displayed a typical coefficient of variation of 

0.4% in World Cup road races, 0.7% in Tour de France road races, 1.3% in road time trials, 1.7% in 

Tour de France time trials and 2.4% in World Cup mountain biking. They went on to acknowledge 

that team tactics and pack riding could account for the lower variability shown in road races and, 

accordingly, compared only events where riders act independently of each other. 

While there are a number of interesting conclusions to be drawn from this work, the most pertinent 

with regards the focus of this PhD investigation is that the level of variation shown between races 

clearly changed depending on the nature of the event. This is especially interesting from a dynamical 

systems perspective given that the event which shows the greatest variation is mountain biking, the 

event which would typically involve the most perturbations of terrain, gradient, body position and 

power output throughout its duration.  

In contrast to the approach outlined above, where an entire race is seen as a single skill 

performance, the aim of this PhD investigation is to investigate intra-individual movement variability 

within cycling technique by using each pedal revolution as an individual instance of a skill 

performance. This links with the recommendations of Kautz et al. (1991) who described pedalling 

technique as the output of a complex biomechanical system and recommended that further 
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investigations should integrate pedalling technique data with the kinematics and dynamics of the 

lower extremities during cycling. To the author’s knowledge this approach has yet to be employed in 

published literature with very few studies investigating intra-individual movement variability within 

cycling.  

2.3.6 Intra-individual movement variability  

Christiansen, Bradshaw and Wilson (2008) and Sides and Wilson (2012) are two rare examples of 

cycling based studies which have mentioned the potentially functional role of movement variability. 

Christiansen, Bradshaw and Wilson (2008) reiterated that movement variability has long been 

considered an undesirable artefact (Bartlett, Wheat & Robins, 2007) citing evidence that greater 

movement variability can increase energy expenditure (Lay, Sparrow, Hughes, O’Dwyer, 2002). They 

also acknowledged, however, that movement variability may play a functional role in reducing injury 

through variable loading of the musculoskeletal features of the joint (Kurz, Stergiou, Buzzi, 

Georgoulis, 2005). To this end they conducted an investigation designed to, in part, determine the 

biomechanical differences between seated and standing postures during cycling. 

Six well trained male cyclists aged 20-39 years (Height: 178.70 +2.77 cm, Mass: 73.70 +3.95 kg, Leg 

Length: 84.87 +1.76 cm) completed a number of modified Wingate test protocols using either a 

seated or standing body position and a range of crank lengths. Each of these tests had a duration of 

6 seconds which was justified as similar in duration to the typical sprint efforts seen throughout flat 

stages of a competitive stage race (Ebert, Martin, Stephens and Withers, 2006). During these trials it 

was observed that cyclists adopted increased levels of movement variability at the 0° (top) and 180° 

(bottom) crank arm positions in the pedal revolution. Christiansen, Bradshaw and Wilson (2008) 

suggested that this would allow for greater adaptation to changing conditions (extrinsic e.g. terrain; 

intrinsic e.g. fitness, fatigue) and that it would reduce the repetitive stress on the individual joints. 

Although this is initially encouraging, it should be repeated that the cycling events in this 

investigation lasted only 6 seconds. As such, the movement variability shown here does not reflect a 

dynamic response to changing conditions within a single performance, rather it shows the adoption 

of a differing technique when met with a new combination of task perturbations. That is to say, this 

is evidence of variation between performances rather than within a single performance of a long 

duration skill which led Christiansen, Bradshaw and Wilson (2008) to recommend that future 

investigations should include other cycling tasks such as time trialling. Addressing this 

recommendation is one of the main aims of this thesis.  



42 | P a g e  
 

Sides and Wilson (2012) aimed to investigate the nature of lower extremity intra-limb coordination 

variability in cycling with a view to ascertaining whether variability present in the system is likely to 

be a functional element in cycling performance or an indicator of a reduction in performance. They 

also cited a secondary aim of investigating the intra-limb coordinative adaptations that occur in 

response to a change in cadence and work rate.  

In order to achieve this, they recruited six trained and six untrained males who performed nine 

pedalling bouts on a cycle ergometer at various cadences and work rates (60, 90, and 120 rev·min-1 

at 120, 210, and 300 W). During these tasks, kinematic data was collected to allow the calculation of 

two intra-limb joint couplings (hip flexion/extension–knee flexion/extension and knee 

flexion/extension–ankle plantar-flexion/dorsi-flexion) which were then analysed using continuous 

relative phase analysis and led to the conclusion that coordination variability is not beneficial to 

cycling performance. For more information of continuous relative phase analysis, please see Section 

3.3.3.  

Initial reading of this summary suggests that Sides and Wilson (2012) supported the traditional 

motor learning theories in viewing variability as noise and indicative of an unskilled performance. 

This is clearly in contrast to the ethos of dynamical systems theory which considers variability to be 

an essential element to normal healthy function (Hamill et al., 1999) and would seem somewhat 

damning for the aims of this PhD investigation. Upon further reading, however, there are a number 

of details within this study which are worth highlighting for further critique.  

Firstly, although the authors should be applauded for recruiting reasonably homogenous participant 

groups (Trained = 20.82 ± 1.27 years, 72.77 ± 11.00 kg, 1.78 ± 0.07 m. Untrained = 21.24 ± 1.25 

years, 74.41 ± 5.90 kg, 1.81 ± 0.06 m), they presented only weekly training duration as a descriptor 

of cycling status. Although it could be argued that the minimum criteria of 5 h specific cycling 

training per week is sufficient to denote “trained” status, there is no detail offered as to the 

composition of this training time. In addition to this, there is a body of literature which questions the 

validity of quantifying cycling “training dose” simply using volume in the format of duration or 

distance covered (Jobson, Passfield Atkinson, Barton and Scarf, 2009; Lambert and Borresen, 2010). 

This suggests that the detail offered by Sides and Wilson (2012) may not be sufficient to reliably 

classify participants as either “trained” or “untrained”. 

The second criticism raised relates to the choice of measurement equipment employed. The authors 

stated that they used a two-scanner motion analysis system collecting kinematic data at a sampling 

rate of 100 Hz. Not only does this raise concerns relating to the number of measurement devices, 
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but the sampling rate also seems low compared to the recommendations made by Payton and 

Burden (2017) and may not accurately record the variability displayed within each pedal revolution. 

For example, at the highest cadence studied (120 rev·min-1) each pedal revolution would take 0.5 

seconds. Measuring at 100 Hz gives a measurement every 0.01 seconds or only 50 measures per 

pedal revolution. This becomes problematic when the authors used the kinematic data to identify 

the start point of each revolution based on the position of a pedal marker and also interpolated their 

kinematic values to 100 time points throughout each revolution.  

While performing the various cycling tasks, all participants in this study wore sports trainers as 

opposed to cycling shoes with cleats. Although this undeniably offers a level of control between 

groups, it could raise questions about the ecological validity of measurements for trained cyclists if 

they are habitually using clipless pedals, which has been repeatedly shown to change pedalling 

dynamics (Mornieux, Stapelfeldt, Gollhofer and Belli, 2008; Wheeler Gregor and Broker, 1995). 

To their credit, having initially reported CRP values across an entire revolution, Sides and Wilson 

(2012) took the seemingly logical step of providing a more sensitive analysis by dividing each 

revolution into separate phases. They performed a simple two-phase split with 12 o’clock to 6 

o’clock representing the propulsive phase and 6 o’clock to 12 o’clock representing the recovery 

phase. Not only does this seem a somewhat crude division when trying to study something as 

nuanced as movement variability within a revolution, it is also worth noting that it fails to 

acknowledge the presence of “dead centres” at the top and bottom of the crank revolution (So, Ng 

and Ng, 2005). These events during the crank rotation occur at approximately 0° and 180° and 

denote points where applying a vertical force to the pedal will not result in a rotation of the crank 

and, instead, a tangential force is required to continue crank progression. 

In addition, Sides and Wilson (2012) conducted their analysis of variability using only data collected 

from the trained cyclist group (n = 6) and only included data from the participant’s right leg, with no 

reference to dominance. 

One further potential criticism can be raised in relation to the calculated measure of variability 

presented here. Sides and Wilson report coordination variability (CRPv) which was calculated as the 

standard deviation at each time point across the 10 revolutions. Although this will, undoubtedly, 

provide a way of quantifying the amount of variation present, Abdi (2010) suggests that calculating 

variability in this way is not ideal. This is due to the tendency of standard deviation to unavoidably 

increase as the range of the measure increases and gave rise to the suggestion that, especially when 
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mean values may be quite different (such as when dealing with different skill level athletes) 

calculating coefficient of variation CV% may be more appropriate (Bedeian and Mossholder, 2000). 

CV% was specifically invented to eliminate the influence of the finite magnitude of a value on 

variability (Pearson, 1897). It does so by relating the spread of a data set relative to its own mean. 

This produces a value which is unitless and divorced from any scale of measurement (Simpson, Roe, 

& Lewontin, 1960) and therefore provides a clearer comparison of the true variance displayed. 

In addition to the potential limitations highlighted here, the authors themselves acknowledged that 

only investigating flexion/extension couplings in the sagittal plane and ignoring movements in the 

other anatomical axes as well as only using a limited range of workloads may have resulted in an 

incomplete picture of any differences which may exist. They also advocated caution when 

considering their results as the participants used a cycle ergometer which limits the ecological 

validity of the study and recommended future work investigating inter-limb coordination in addition 

to the intra-limb couplings shown here. 

2.4 Summary  

As demonstrated throughout the literature review chapter, the historical tendency within 

biomechanics is to either assume that intra-individual variability in movement patterns is merely 

“noise” (Bartlett, Wheat and Robins, 2007) and discount it, or to actively discourage variability due 

to an implicit assumption that movement patterns for skilled performers are invariant (Davids, 

Glazier, Araújo and Bartlett, 2003; Van Emmerick and Van Wegen, 2000; Padulo et al., 2023). 

However, there is also evidence presented within this chapter that cyclists will change their 

technique in response to any number of task perturbations. These include the gradient (Arkesteijn, 

Jobson, Hopker and Passfield, 2013), workload (Macintosh, Neptune and Horton, 2000), cadence 

(Sanderson and Amoroso, 2009; Candotti et al, 2009), body position on the bicycle (Savelberg, Van 

de Port and Williams, 2003) and fatigue state (Diefenthaler, Coyle, Bini, Carpes and Vaz, 2012), as 

well as the style of ergometer being used (Arkesteijn, Hopker, Jobson and Passfield, 2013) if the 

assessment is conducted in a laboratory setting. 

Additionally, it has been shown that the technique alterations mentioned above may be dependent 

on experience level and that patterns of leg muscle recruitment vary between novice and highly 

trained cyclists (Chapman, Vincenzino, Blanch and Hodges, 2008). There is evidence that 

professional cyclists display a different pedalling technique to recreational cyclists (Broker, 2003; 

Cavanagh & Sanderson, 1986) and that elite cyclists apply higher force during the downstroke than 
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sub-elite cyclists (Coyle et al., 1991) and also show overall higher pedal force effectiveness than non-

cyclists (Mornieux et al., 2008).  

Many of the findings covered above can be explained by dynamical systems theory, whereby the 

movement patterns cyclists employ are described in terms of a system which is able to constantly 

adapt to the varying demands of a task (Williams, Davids, and Williams, 1999). Under this theoretical 

framework, the differences seen between novice and experienced cyclists can be explained by their 

respective abilities to produce movement patterns through generic processes of self-organisation. In 

essence, it is their ability to solve the “degrees of freedom problem” (Bernstein, 1967) which allows 

a cyclist to better cope when the task requires adaptability of complex motor patterns within 

dynamic performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 

2006). 

Despite the apparent suitability of dynamical systems theory when studying the continuous, 

multijoint nature of the cycling task (Hug, Drouet, Champoux, Couturier and Dorel, 2008), and the 

research discussed throughout this review which shows consistent evidence of cyclists adjusting 

their technique to match task perturbations, there are very few research studies which have 

adopted this theoretical viewpoint and even fewer studies have investigated the potential positive 

roll that movement variabilty could play in overall cycling performance. The two studies discussed 

here which do take this specific approach (Christiansen, Bradshaw and Wilson, 2008; Sides and 

Wilson, 2012) both have limitations which have been outlined earlier in this review and it would 

therefore appear that this is an area of cycling literature which merits further investigation. In 

essence, the aim of the upcoming investigations is to answer the question of whether intra-

individual movement variability may play a functional role in cycling performance. 

In order to address this research question, there are a number of methodological considerations to 

be aware of. The coming sections of this review aim to highlight some of the unique challenges that 

studying cycling brings with it while it is also intended that the various methodological choices made 

throughout this thesis will be explained along with potential alternative methods which were 

ultimately rejected. 

2.5 Cycling specific methodological considerations 

2.5.1 Open skill 

Because of it’s importance when looking at topics that concentrate on control and co-ordination of 

movements, movement variability has been most extensively studied in single performance, closed 

skill applications such as Shooting (Arutyun, Gurfinkwl and Mirskii, 1968; Scholz, Schöner and Latash, 
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2000), Basketball (Miller, 2002; Button, Macleod, Sanders and Coleman, 2003 and Robins, Wheat, 

Irwin, and Bartlett, 2006) and, perhaps most extensively of all, Golf (Knight, 2004; Bradshaw et al., 

2009; Glazier, 2011; Langdown, Bridge, and Li, 2012 and Tucker, Anderson and Kenny, 2013). All 

these modes of activity have a common feature in that it is easy to isolate a single instance of skill 

performance, repeat it outside of the normal competitive environment and concentrate on the 

importance of trial to trial variability. 

 

Like many of these skills, a cycling task represents a multijoint movement characterised by several 

degrees of freedom (Hug, Drouet, Champoux, Couturier and Dorel, 2008). In contrast with other 

movements, however, the constant and cyclic nature of the circular trajectory of the pedal restricts 

lower extremity displacement and does not lend itself to such dissection into individual units of skill 

performance. Therefore, when studying intra-individual movement variability, instead of studying 

repeated performances of the same skill, the focus will be on repetitions of the same action within a 

single trial (e.g. individual pedal strokes within a time trial). This allows investigation of a 

temporal/fatigue factor which is not so prevelant in the previously mentioned papers but could be 

key in understanding how more accomplished cyclists are able to use movement variability in order 

to mitigate the effect of fatigue and maintain a higher level of power output for longer periods. 

 

2.5.2 Capture volume 

When studying cycling, another potential issue to overcome is the amount of distance covered 

during a cycling effort. This makes it difficult to assess the athlete’s technique from a kinematic 

perspective due to the inability to calibrate such an extensive capture volume. One obvious way to 

combat this difficulty, as alluded to above, is to recreate the cyclist’s equipment set up using an 

ergometer in a controlled environment such as a laboratory setting. There is, however, a readily 

available body of literature which focusses on the ecological validity of such an approach. For 

example, studies by Jobson et al. (2007) and Jobson, Nevill, George, Jeukendrup and Passfield (2008) 

have consistently shown that there is a significant difference in cycling speed and power output 

between laboratory and road conditions during time trial events and Bertucci, Grappe and 

Groslambert (2007) show more broadly crank torque profiles are significantly different when 

comparing lab and outdoor cycling conditions.   

 

Secondary to this is the meticulous nature with which accomplished cyclists attend to their bike 

configuration. There is a range of literature from the 1960s onwards (Hamley & Thomas, 1967; 
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Nordeen-Snyder, 1977; Burke, 1994; Iriberri et al., 2008; Fonda, Sarabon and Li, 2014) espousing the 

importance of performing accurate bike fitting with as little as a 5% change in saddle height affecting 

knee joint kinematics by 35% and moments by 16% (Bini, Hume and Croft, 2011). It is therefore 

worthwhile noting that accurately replicating a participant’s bike configuration is of paramount 

importance if an ergometer is to be used. 

 

In acknowledging that these studies bring into question the validity of the ergometer approach, 

there must also be an awareness that from a pragmatic point of view, these concerns may have to 

be overlooked in order to provide enough control of conditions to draw meanigful conclusions in the 

initial stages of this investigation. This in turn raises issues from a dynamical systems theory 

perspective as the level of control afforded by a laboratory setting may also remove the very stimulli 

which require an individual to display movement variablity in the first place such as changing road, 

altitude, weather or competition conditions. It is therefore suggested that this investigation will look 

to initially make use of laboratory settings but move into the field as soon as is practically possible in 

order to obtain a true reflection of any movement variability which is present. 

2.5.3 Recording kinematic measures in the field 

When the aforementioned shift to a field-based setting occurs, it brings with it a new set of 

challenges with regards collecting kinematic data. As mentioned before, it would be impossible to 

calibrate the entire performance volume to allow for kinematic data to be recorded using the 

traditional camera-based motion capture techniques, and so alternative solutions must be sought. 

The use of wearable sensors provides an excellent alternative and their usage has grown steadily 

ever since a spring-loaded weight was attached to the body segments to determine its movement 

characteristics (Lee, Wheeler and James, 2019). For example, Electro-goniometers have long been 

used for the measurement of lower extremity joint motion (Chao, Askew and Morrey, 1980) and 

they are often deemed suitable for practical applications within biomechanics because of their 

limited size (Legnani et al., 2000). The lightweight equipment and non-invasive methods of data 

collection, coupled with the ability to record to offline data logging systems makes them a 

potentially excellent choice for field-based assessments within cycling. Indeed, they have already 

been assessed in terms of their suitability for use in professional bike fitting services (Fonda, Sarabon 

and Li, 2014) and have been found to be more accurate and valid for use within laboratory studies 

than manual methods of measuring knee joint range of motion (Shamsi, Mirzaei and Khabiri, 2019). 

Likewise, inertial measurement units (IMUs) offer an unobtrusive, lightweight method of data 

collection in the field. Although initially developed for mo-cap/animation applications within the film 
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and gaming industries, products such as Xsens technologies’ motion capture suits quickly became 

adopted by sports science practitioners who required a portable system in order to research human 

motion beyond the constraints of the traditional lab environment (Mavor et al 2020). There is a 

significant body of literature which investigates the validity of such devices (e.g. Van den Noort, 

Scholtes and Harlaar, 2009; Eckardt, Munz and Witte, 2014; Geissinger and Asbeck, 2020; De Baets 

et al., 2020). IMUs have been shown to provides accurate measures of accelerations and 

orientations during multiple functional activities (Cudejko, Button and Al-Amri, 2022), are suitable 

for rehabilitation applications and sports to detect malposition (Schlage, Kitzig, Stockmanss and 

Naroska, 2021) and also happen to be relatively cost effective and widely available (Wei, Kurita, 

Kuang and Gao, 2021).  

With such a range of wearable technologies available, it should be possible to find a suitable method 

of overcoming the challenges inherent within field based kinematic data collection. It should be 

noted, however, that these wearable technologies and mobile sensor systems have yet to be 

validated for use within cycling, especially when trying to calculate CRP. This, therefore, will 

obviously have to be addressed throughout the course of this thesis (see Studies 2-5). 

2.5.4 Participant groupings 

Another issue raised when studying cycling is that of how to quantify the level of accomplishment 

shown by participants. Initially it was proposed that this investigation would follow a similar 

structure to that of Scholz, Schöner and Latash (2000) in that it would seek to quantify the level of 

movement variability present within individuals comparing novices and elite performers. Ideally 

these groups would be comprised of individuals who are physiologically similar in terms of their 

generic measures of physical fitness (Lactate threshold, Power Output, V̇O2 max, etc.) but are 

competing in different categories within the established competitive structure set out by British 

Cycling (see Table 3-1). In selecting physiologically similar individuals with differing competitive 

levels it was hoped that a level of control can be sought and therefore it is more likely to be able to 

attribute differences in performance to technical differences such as enhanced movement 

variability. 

This approach, however, brings its own limitations as it is very difficult to recruit a true “novice” 

cyclist who would be capable of completing a ten-mile time trial (as required for the first 

investigation) and it is highly unlikely that a true “novice” cyclist would hold a race license. It is also 

unlikely that participants of such different experience levels would exhibit similar V̇O2 max values 

given the amount of training required to progress through the race licence categories. 
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Additional difficulties are seen due to the way promotion between race license categories occurs 

(see Table 3-1) as it is possible for a rider to gain promotion by amassing points from completing a 

large number of events (but not finishing particularly highly in any of them) or by completing 

relatively few events but placing highly in those they do enter. It is also possible for a rider to hold, 

for example, an Elite category license but to have reached this level only ever competing in one 

particular type of event (e.g. never competing in a time trial event) which, again, questions the 

validity of using this as a suitable framework for grouping participants into bands of similar 

accomplishment levels. 

Table 2-2. Competitive cycling category structure adapted from Britishcycling.org.uk, 2015 

Category Eligibility Maintenance 

4th  A new junior or senior licence holder. - 

3rd Any junior or senior licence holder who has gained 

12 points during any one season whilst holding a 

4th category licence 

Riders are never downgraded to 

4th category once a 3rd category 

licence has been achieved. 

2nd Any junior or senior licence holder who has gained 

40 points during any one season whilst holding a 

3rd category licence. 

Riders must obtain at least 25 

points in events open to that 

category of rider. 

1st Any junior or senior licence holder who has gained 

200 points during any one season whilst holding a 

2nd category licence. 

Riders must obtain at least 100 

points in events open to that 

category of rider. 

Elite Any Senior licence holder who has gained 300 

points during the previous season whilst holding an 

Elite or 1st category licence. 

A rider who, at the 31 December of the previous 

year, was listed in the top 10 in the elite men’s 

British Cycling Cross-country MTB Series rankings 

may also claim an elite licence. 

Riders must obtain at least 300 

points in events open to that 

category of rider. 

 

To demonstrate some of the difficulties outlined above, participants in the initial study were ranked 

according to the time they took to complete the simulated time trial event. If, for example, all of the 

4th category riders had been grouped together, this group would have included the 2nd, 4th, 7th, 8th 

and 10th ranked riders. This clearly does not represent a homogenous group in terms of time trial 

performance so alternative ways of grouping participants were sought. Fortunately, the largest 
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difference in finishing time occurred between the 5th and 6th ranked riders, giving an equal split of 

participants in an upper and lower group. This approach may need revisiting once the investigations 

move beyond a laboratory setting as other factors such as body size (Jobson et al. 2007) and body 

position (Jeukendrup and Martin, 2001) play a larger role in overall performance but at the time of 

analysing the initial study, it appeared to be a logical approach.  

2.6 Kinematic Analysis Methods 

Given the aim of this thesis, it is important to consider those methods that are available to quantify 

movement variablity from a dyamical systems perspective. Hausdorrff et al. (1999) and Schot, Hart 

and Mueller (2002) both suggest that methods such as the coefficient of variation (CV%) have 

traditionally been the predominant measure of movement variation in discrete kinematic analysis. 

However the sensitivity of such measures has been questioned as they represent the sum of not only 

the Individual’s true biological movement variability but the measurement error also (Rodano and 

Squadrone, 2002). 

These concerns led Bartlett, Bussey and Flyger (2006) and Bradshaw et al. (2007) to develop 

alternative methods to quanify the true biological variability (BCV%) of human movement and 

separate it from measurement error. CV% has been reported in previous movement variability 

studies, for example a study on the variability of the maximal instep soccer kick (Lees and Rahnama, 

2014) and were adopted for this thesis also. 

At a similar time to Hausdorrff et al’s (1999) work, however, Hamill, Haddad and McDermott (2000) 

identfied that there are a variety of alternative methods available to quantify movement variability 

and advised that the selection of a method should be determined by the nature of the research 

question. They discussed a number of methods which can be classified as either discrete or 

continuous methods and will be briefly outlined below. All of these approaches are cognicent of the 

idea that joint movements do not happen in isolation due to the interconnected nature of the 

structures within the human body and therefore deal with the idea of joint or segment couplings. 

This approach can be seen in any number of gait based kinematic investigations (eg. Rosenbaum, 

Becker, Wilke and Claes, 1998; DeLeo, Dierks, Ferver and Davis, 2004; Ferber, Davis and Williams, 

2005; Herb et al. 2014) and seems appropriate for the in depth analysis of cycling kinematics 

undertaken throughout this thesis. 

2.6.1 Discrete methods 

Both discrete methods discussed by Hamill et al. (2000) are essentially temporal measures which 

illustrate the relative timing of key events in a movement cycle, allowing a measure of latency 
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between, for example, the flexion of one joint compared to that of another. This is useful as it is a 

reasonably simple method which requires no further analysis than calculation of simple joint angles. 

The disadvantage of these methods, however, is that they only take a meaure of this co-ordination 

once per movement cycle (Van Emmerick, Rosentein, McDermott and Hamill, 2004). In the case of 

this particular investigation, this would be the equivalent of only measuring the relative position of 

two joints once per pedal revolution. The issues with such a reduction in sampling frequency are 

hopefully apparent but will be discussed in greater detail later in this thesis.   

Hamill et al. (2000) explains that the time-series approach allows the determination of a discrete 

relative phase angle (φ) between two joints or segments at a specific event during a movement 

cycle. Examples of this approach can be seen in work by Hamill, Bates and Holt (1992) and McClay 

and Manal (1997) who both used this approach to quantify the relative timing of knee and subtalar 

joint motions during the support phase of the running stride. In these examples the specific events 

of interest were the point at which the knee joint reaches maximum flexion and the subtalar joint 

reaches maximum eversion and this was then calculated as follows: 

φ =
t1 − t2

T
 ×  360° 

where T is the support period, t1 is the time to maximum knee flexion, t2 is the time to maximum 

subtalar eversion. Both t1 and t2 were mearsured from a predetermined zero point (in this case initial 

foot contact). This calculation results in values between 0° and 360°, where a value of 360° 

represents two perfectly in phase movements and values between 0° and 359° indicate the amount 

to which the movements are out of phase. Performing this calulation over a number of strides 

allowed Hamill, Bates and Holt (1992) and McClay and Manal (1997) to present the variability of this 

coupling but critically, as mentioned earlier, this approach provides only information at one specific 

instant in each stride. 

A similar issue can be seen with return maps, another discrete measurement tool which was used by 

McDermott, Van Emmerik and Hamill (2000) to quantify variability in the coordination between 

stride and respiration during locomotion. When studying the underlying mathematics of this method 

the similarities with the time series approach are immediatley apparent as discrete relative phase 

angle is, in this instance, calculated using the formlua below: 

φ =
Tn
tn

 ×  360° 
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In this example, Tn is the time between consecutive heel contacts and tn is the time from heel strike 

to the end of inspiration. A return map would then be created by plotting multiple calculations of ϕ 

in order to assess the frequency ratios between the two events (in this example breaths and strides). 

This allows a researcher to assess the preferred ratio between the two events and therefore identify 

couplings which stray away from this ratio (i.e. display a level of variability) and quantify how close 

the system is to a transition to a new preferred state. 

The advantage of a return map approach over the time-series method is the ability to study systems, 

such as locomotor-respiratory coupling example presented by McDermott et al. (2000), where 

frequency ratios other than 1:1 are present. It is also useful for systems where there is a very regular 

signal (in this example, stride) and a signal that varies based on the frequency of the regular one (in 

this example, respiration). As neither of these conditions would be present in a cycling-based system 

it must be concluded that this, along with the issues of single point measurement mentioned above, 

makes both the discrete methods presented here inappropriate methods of analysis for the current 

thesis. 

2.6.2 Continuous methods 

In contrast to the discrete methods already outlined, continuous methods offer the ability to 

evaluate movement coordination, and therefore variability, over a complete movement cycle (Hamill 

et al. 2000). This is advantageous as the researcher is no longer limited to a single time point within 

the movement and can chose to either assess movement in terms of relative motion or continuous 

relative phase.   

In order to assess relative motion, the joint angle for each segment involved in the analysis must first 

be calculated across the entire motion cycle. Once this has been achieved, the relative motion of the 

joints can be assessed using angle-angle plots and quantified using vector coding techniques (see 

Sparrow et al., 1987). As with the time-series approach above, the values from this analysis also 

range between 0 and 360° but here the values are used to describe the relative movement of the 

joints, rather than the latency between events. 

Using a relative motion approach, values of 0° or 180° would suggest the distal joint of a coupling is 

stationary while the proximal joint is moving. Values of 90° and 270° indicate the opposite. Values of 

45° and 225° denote in phase movements in the same direction at both joints with values of 135° 

and 315° indicate equal movement but in opposite directions. This directional interpretation is 

advantageous as it provides a greater understanding of the motion the coupling with no need for 
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normalisation procedures. However, as pointed out by Hamill et el. (2000) this method provides no 

temporal information and therefore offers an incomplete view of the coupling motion. 

Continuous relative phase overcomes this issue by replacing the angle plots of a relative motion 

approach with phase plots which can then be used to calculate the four-quadrant arctangent phase 

angle of the joints of interest (Hamill et al., 2000). This allows the calculation of the relative phase 

between two segments at every point in the trajectory (Wheat and Galzier, 2006) and has been 

detailed in numerous reviews (Hamill et al., 2000; Kurz and Sterigou, 2003; Van Emmerick et al., 

2004; Weat and Galzier, 2006).  

Lamb and Stöckl (2014) identified that there has been some debate as to whether the signal values 

for these plots need normalising to avoid the magnitude of values from one segment dominating the 

continuous relative phase pattern but both they and Kurz and Stergiou (2002) concluded that, in the 

case of joint kinematics, this is not required because the finite values are unimportant, it is the 

relative phase which is of interest. Calculation of continuous relative phase, therefore, requires 

normalisation of values against time, but not normalisation of the original signal values themselves. 

Once the phase angles are calculated for joint and the time history is normalised to a fixed number 

of data points, the continuous relative phase is found by simply subtracting the phase angle of one 

joint from that of the other at each point in time over the entire movement. For example, the 

formula to calculate the CRP angle of the thigh/leg coupling is:  

𝐶𝑅𝑃 =  𝜑𝑡ℎ𝑖𝑔ℎ (𝑡) −  𝜑𝑙𝑒𝑔 (𝑡)  

where ϕthigh(t) and ϕleg(t) are the normalised phase angles of the thigh and leg, respectively, at each 

instant in time of the movement. Continuous relative phase values can, again, range from 0° to 360° 

where 0° shows the respective movements of the coupled joints perfectly in-phase, while a CRP of 

180° indicates that they are perfectly anti-phase and any value between these indicates a relative 

amount of in-phase or anti-phase movement.  

Again, Lamb and Stöckl (2014) identified inconsistencies with this reporting convention with some 

authors choosing to report values only between 0◦ and 180◦ since the values −180◦ and 180◦ both 

indicate anti-phase behaviour and others suggesting that the positive and negative values have 

qualitative meaning and should be preserved. Kurz & Stergiou (2002), for example, support 

preserving the negative values as they suggested that if the phase angle of the proximal segment is 

subtracted from the phase angle of the distal segment, then positive continuous relative phase 
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values indicate that the distal segment is ahead of the proximal segment in phase space therefore 

providing a greater indication of the coupling’s interaction. 

2.6.3 Continuous relative phase analysis 

Having briefly outlined these potential methods, it seems that the continuous, multijoint nature of 

the cycling task (Hug, Drouet, Champoux, Couturier and Dorel, 2008) lends itself best to a continuous 

relative phase method of analysis. This is because, in a kinematic chain, the motion of one segment 

subsequently influences the motion of an adgecent segment, and therefore the study of isolated 

joints does not effectively capture the complexity of the coordinated motion (Bartlet et al. 2007). 

This is especially true when one end of the kinetic chain is attached to a pedal and Chapman et al. 

(2009) sugested that the consideration of the coupling relationship between segments may 

therefore be espiecially crucial in the analysis of motion within the field of cycling.  

In addition, continuous relative phase analysis has been deemed to be more sensitive to changes in 

coordination (Davids et al., 2006) and seems appropriate because of the multiple ways in which 

cycling could potentially be studied throughout this thesis. Although the focus so far has been on the 

treatment of kinematic variables, Burgess-Limerick, Abernethy and Neal (1993) identified that 

information regarding multijoint coordination is also likely to be important in attempting to 

understand the respective roles and interaction between the bi and monoarticular muscles which 

are involved in complex human movement. This is an area which may be included in the later stages 

of this thesis as kinematics and muscular activity are so inherently interconnected.  

Limerick, Abernethy and Neal (1993) also suggested that calculations of continuous relative phase 

should provide a measure which is sensitive to the effects of environmental changes, learning or 

other independent variables which is obviously important when analysing human movement from a 

dynamical systems perspective and should aid in the understanding of the control of movement 

more generally. They went on to state that they believed the use of continuous relative phase 

analysis provides information that cannot be obtained through conventional angular position vs time 

presentation and that this may lead to substantive differences in interpretation of kinematic data. 

They did, however, concede that a strong argument can be made for the use of both types of 

analysis where inter-joint coordination is relevant to the questions being addressed. 

2.6.4 Measurement duration 

Having established that Continuous Relative Phase was to be the main analysis method for kinematic 

variables it was then important to ascertain how many individual pedal revolutions needed to be 

analysed to give a stable measure for each participant. In the first instance kinematic variables were 
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recorded throughout an entire simulated ten-mile time trial event with the intention of having a 

number of discrete time “windows” from which measures would be taken in order to investigate 

whether the variables changed over time. These “windows” were fixed at 5, 10, 15 and 20 minutes 

through the effort giving measures at approximately 25%, 50%, 75% and just before completion of 

the simulated event. Individual pedal revolutions were identified using the vertical component of 

pedal motion as a reference and all raw kinematic measures within the revolution were then 

interpolated to 101 time points. This approach is akin to that which was recommended by Lamb and 

Stöckl (2014) and Kurz and Stergiou (2002) and allows not only standardisation of each revolution in 

terms of data points but also gives the opportunity to report events relative to a percentage of a 

pedal revolution as is the convention in cycling literature. 

Once the number of data points in each pedal revolution had been normalised, Continuous Relative 

Phase values were calculated for two joint couplings (Hip-Knee and Knee-Ankle) and the cumulative 

standard deviation of these values were plotted starting at 2 revolutions and continuing to 30. As 

can be seen in the representative figure below, three participant’s data was analysed in this way and 

the standard deviation values seemed to plateau around 8 revolutions. It was therefore decided to 

analyse 10 pedal revolutions at each time point in order to achieve a stable measurement. 

Figure 2-5. Demonstrating how CRP values stabilise as more revolutions are included for analysis. 
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2.6.5 Full revolution analysis 

The analysis method detailed above gives a mean standard deviation of Continuous Relative Phase 

across 10 pedal revolutions at each of the 100 time points which data had been normalised to. 

Initially these 100 Continuous Relative Phase values were combined into a single value to report the 

mean standard deviation shown across the whole pedal revolution.  A representation of the 

combined values for one coupling produced this way from all participants in the initial study can be 

seen in Table 3-2 under the heading of “Full Revolution”. There were some concerns, however, that 

this approach would lack the sensitivity required to demonstrate potential differences throughout a 

pedal revolution and would suffer from the same issues inherent with the discrete measurement 

methods discussed previously. 

2.6.6 Simple phase split analysis 

To address this issue, Continuous Relative Phase values were calculated using a crude 50-50 split. 

The suggestion here being that from 0-50% of a pedal revolution represented the phase in which 

power was being applied to the pedal and 50-100% represented the recovery phase where the leg in 

question was not actively contributing to power production. This definition is displayed in Wozniak-

Timmer (1991) but could be questioned given the body of literature debating whether cyclists 

actively pull up with the recovering foot when using clipless pedals (eg, Kautz, Feltner, Coyle and 

Baylor, 1991). Regardless, it served to demonstrate that a level of variation had been masked by only 

reporting one value per pedal revolution (see Table 3-2) but still did not, in the context of this thesis, 

give enough detail throughout the various phases of the revolution to fully exhibit the nuanced 

kinematics at play.  

It is worth noting at this point that the methodological decisions outlined so far very much mirror 

the approach of Sides and Wilson (2012). This is a paper which has been discussed in detail 

elsewhere in this thesis and also employed a continuous relative phase method of analysis, used a 

10-revolution sampling window, selected the same joint couplings, initially reported mean CRP 

across an entire revolution and subsequently split the revolutions into a propulsive and recovery 

phase. The methodological decisions taken here were done so independently of this paper as it was 

not discovered until after this process had been completed.   

2.6.7 Four phase analysis  

In contrast to Sides and Wilson (2012), the decision was taken to improve upon the rather simple 

dissection of the pedal revolution described above. As such, a further inspection was performed with 

four “quarters” across the pedal revolution. This classification of a pedal revolution into four sections 

was employed by Dorel, Couturier and Hug (2009), Dorel et al. (2009) and Lanferdini, Jacques, Bini 
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and Vaz (2014) and effectively separates the power and recovery phases from the top and bottom of 

the pedal revolution (see Figure 3-2). Given that both the top and bottom points of a pedal 

revolution have been long been identified as areas where tangential force is at a minimum (Ericsson 

and Nisell, 1988; Patterson and Moreno, 1990) it seems logical to view them separately to those 

areas where force production is at it’s greatest and the values shown in Table 3-2 would appear to 

somewhat validate this approach. 

  

 

 

 

 

 
 

Figure 2-6. Showing the four phases per pedal revolution.  

Adapted from Dorel, Couturier and Hug (2009) 

 



58 | P a g e  
 

 

In Table 3-2, Left leg Knee-Ankle coupling at all time points are displayed as a representation of the wider data set. This demonstrates how much variance 

there is when different frames of reference are used to describe a pedal revolution. Taking the data from the 15 minute measurement window, for 

example, when viewing the pedal revolution in its entirety the result for mean continuous relative phase value is 21.14 (±4.71). Splitting the pedal 

revolution into the simple power and recovery phases returns mean values of 18.68 (±4.57) and 23.64 (±7.43) respectively. Even this simple division 

suggests that the overall value for a whole revolution is not sensitive enough to fully demonstrate how the relationship between joints in a couple alters 

throughout the course of a pedal revolution. As such, whole revolution values will be used to guide gross judgements of variability but further division was 

required in order to assess the granular nature of any movement variability which may be present in the kinematic data.

Table 2-3. Demonstrating the difference in values when calculating CRP via three different methods. 

  
  5min 10min 15min 20min 

  Full Revolution Simple Phase Split “Quarters” Split Full Revolution Simple Phase Split “Quarters” Split Full Revolution Simple Phase Split “Quarters” Split Full Revolution Simple Phase Split “Quarters” Split 

Top Phase 
  

30.11 (±10.53)   
 

32.81 (±13.82)   
 

28.39 (±8.63)   
 

22.34 (±5.97) 

Power Phase 
 

20.49 (±6.76) 18.89 (±9.21)   21.96 (±7.46) 18.44 (±6.50)   18.68 (±4.57) 17.49 (±3.76)   20.24 (±6.25) 14.44 (±5.97) 

Bottom Phase 
  

18.71 (±9.39)   
 

21.54 (±9.31)   
 

16.43 (±4.96)   
 

22.18 (±13.10) 

Recovery Phase 
 

21.42 (±8.19) 20.86 (±8.64)   28.98 (±10.48) 29.54 (±11.68)   23.64 (±7.43) 23.99 (±11.90)   21.64 (±2.35) 16.83 (±4.64) 

Full Revolution 22.62 (±9.08) 
 

  25.43 (±8.46) 
 

  21.14 (±4.71) 
 

  22.83 (±5.79) 
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2.7 Electromyography Analysis Methods 

De Luca (1997) described electromyography as a “seductive muse” as it “provides easy access to 

physiological processes that cause the muscle to generate force, produce movement and accomplish 

the countless functions which allow us to interact with the world around us”. While this may be true, 

it is also true that EMG analysis is “too easy to use and consequently too easy to abuse” (De Luca, 

1997), leading to incorrect interpretation and use. To avoid abusing this tool, a number of issues 

need to be addressed, many of which are similar to those raised in the in the previous section 

relating to kinematic analysis. Instead of refreshing those arguments, the focus here will be on 

methodological choices which are specific to the electromyographical elements of this investigation. 

2.7.1 Electrode choice 

When conducting EMG analysis, the first choice to consider is the style of electrode used to record 

muscular signals. At the most fundamental level, a choice needs to be made between using 

indwelling electrodes which are inserted into the muscle fibre and surface electrodes which are 

merely attached to the skin to record activity from the underlying muscle. 

As noted by Parro (2014), indwelling electrodes may have superior diagnostic value but the process 

of inserting them is extremely invasive and often painful, making it inappropriate for monitoring 

human movement. It was also assumed that the use of indwelling electrodes would hugely reduce 

the likelihood of recruiting voluntary participants for this investigation. Indeed, due to its invasive 

nature, this technique has been used in very few cycling studies (e.g. Juker et al., 1998, Chapman et 

al., 2006, Chapman et al., 2007) and in only few muscles (Tibialis posterior, Psoas). 

Another reason for not using indwelling electrodes is based on the pioneering work of Henry 

Pickering Bowditch (1840–1911), Keith Lucas (1870–1916) and Lord Edgar Douglas Adrian (1889–

1977). Their work has been widely accepted to explain that the muscle fibres involved in a muscular 

contraction will adhere to an “all or nothing principle”. That is to say that, when stimulated, each 

individual muscle fibre contracts with either a maximal response or none at all. If the demands of the 

task require more muscular force, a greater number of fibres are recruited but the individual 

contribution of each fibre to overall force production will remain constant.  

If we are happy to assume that Lord Adrian’s principle, for which he jointly won the 1932 Nobel Prize 

for Physiology (Pearce, 2018), is correct, then we must also assume that indwelling electrodes 

cannot be appropriate for the measurement of sub-maximal contractions. Hug and Dorel (2009) 

noted that, with indwelling electrodes, the volume of muscle from which signal is recorded is 

relatively small (few cubic millimetres) and thus may not be representative of the total muscle mass 
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involved in the exercise. It is theoretically possible that using indwelling electrodes means it may be 

inserted into a muscle fibre that is simply not recruited to perform that task. Conversely, surface 

EMG has been shown to provide information from a large mass of muscle tissue and is, therefore, 

more directly correlated to the mechanical outcome (Frigo and Shiavi, 2004). 

Additionally, it has been shown that EMG signals progressively and significantly decreased with time 

with indwelling electrodes, but not the surface electrode equivalent (Reeves, Starbuck and Nester, 

2020). It was found that the recorded mean amplitude from indwelling electrodes had reduced by 

11% after 25 minutes and 16% after 50 minutes and peak amplitude reduced 22% at 20 minutes and 

37% at 50 minutes. None of these changes were evident in the surface EMG signal, bringing into 

question the suitability of indwelling electrodes for use in experiments of more than 30 minutes.  

This is not to say that surface electrodes are without methodological concerns. For example, Allen, 

Brookham, Cudlip and Dickerson (2013), found that surface electrodes overestimated by 72% and 

400% maximal voluntary contraction in external and internal axial humeral rotation trials, 

respectively. They recommended caution when interpreting surface recordings as indicators of 

indwelling recordings for exertions where the muscle studied is not a primary mover. In addition to 

this, there is a greater likelihood of “crosstalk” when using surface electrodes. 

Crosstalk occurs when an electrode records data from a source other than the muscle of interest and 

can lead to artificially inflated values for muscular recruitment. Although some literature shows this 

as a significant issue (Farina, Merletti, Indino, Nazzaro and Pozzo, 2002; Farina, Merletti, Indino and 

Graven-Nielsen, 2004) this is still an area of debate with literature reviews on the subject still being 

published (e.g. Mesin, 2020.) and other studies discounting it entirely with Solomonow et al. (1994) 

concluding that “the crosstalk problem in surface recording is negligible for most biomechanical 

studies”. 

Given the likely duration of a ten-mile time trial, the possible discomfort for participants and the 

chance of erroneous data when conducting sub-maximal muscular contractions, it was agreed that 

this investigation would employ surface electrodes only.  

2.7.2 Intra electrode distance 

One proposed method of addressing crosstalk in surface electrodes is to reduce the interelectrode 

distance when recording surface electromyography. This has been an ongoing area of investigation 

with comprehensive guidelines published before the turn of the 21st century (Hermens et al., 1999) 

and continued additions/critiques being published very recently (e.g. Farago, Macisaac, Suk and 

Chan, 2022; Xu et al., 2022; Smit et al., 2022). 
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Farina et al. (2002) evaluated crosstalk between vastus lateralis, vastus medialis, and rectus femoris 

muscles by selective electrical stimulation of one muscle and recording from the stimulated and 

another muscle with linear surface arrays of eight electrodes. Single-differential and double-

differential detection systems were used with interelectrode distances in the range 10–40 mm. Their 

results suggest that crosstalk increased with increasing interelectrode distance and was statistically 

higher for single than for double-differential recordings.  

Castroflorio et al. (2004) investigated if the sensitivity of surface electromyography was affected by 

the inter-electrode distance of the bipolar recording and the effect of inter-electrode distance on the 

estimated amplitude and spectral EMG variables. They found that increasing the inter-electrode 

distance resulted in a significant reduction of the estimation variability and noted that amplitude 

EMG variables were particularly affected by inter-electrode distance. They therefore recommended 

that this should be fixed when subjects or muscles are compared in the same or different 

experimental conditions.  

Afsharipour, Soedirdjo and Merletti (2019) furthered this discussion and focussed on the three 

issues of electrode size, inter-electrode distance and the effect of the size of the electrode grid. Their 

recommendations were that small electrodes (< 3 mm) with small interelectrode distances (< 5 mm 

or < 10 mm as a questionable compromise) be used for surface EMG as this was a balance between 

the need for small inter-electrode distance and the fact that this will require greater signal 

amplification as the signal strength will be weaker. 

In accordance with all recommendations above, the electrodes used for all EMG investigations in this 

thesis were from the Delsys Trigno Avanti range which features 1mm contacts with a fixed 10mm 

inter-electrode distance. They are capable of onboard filtering using a Butterworth bandpass and 

Route Mean Square Envelope Calculations with a 100ms window.  

2.7.3 Feedback system 

Most commercially available EMG systems can be classified as either hard-wired/“on-line” or data 

logger/”off-line” systems (Payton and Burden, 2017) with each of these options offering their own 

relative strengths and limitations.  

A data logger style system allows for data collection away from a fixed position or static computer 

station. This is advantageous when studying actions such as cycling which cover a large distance (see 

section 3.2.2) and, by definition, would require the participant to go beyond the range of any 

wireless transmission range during the performance of their event.  
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Traditionally, however, data loggers have not allowed the production of a “live” view of the recorded 

EMG signal and therefore the potential for incomplete recordings is increased. Additionally, these 

types of systems have a limited amount of internal storage, which inevitably results in a compromise 

somewhere in the recording process. Typically, this manifests in either reduced sampling rates, 

reduced recording durations or a limited number of electrodes used. Although the first two of these 

concerns have been largely addressed in recent years, the data logger system available for this thesis 

is limited to a maximum of four sensors transmitting via Bluetooth to a mobile phone. 

On-line systems, where data is transmitted directly to a base station that is usually attached to a 

computer with an internet connection, don’t suffer from these limitations. They offer the theoretical 

ability to record an infinite amount of data with as many sensors as are available but make it 

impossible to collect data beyond the range of the wireless transmission or, in the case of a truly 

“hardwired” system, beyond the length of the cable.  

Due to the differing testing environments which may potentially be employed during this thesis a 

decision will be made during the planning stages of each study as to which system to employ. This 

will always be the system which allows the greatest amount of data to be recorded, assuming that it 

is feasible to use it in a safe and accurate way during the proposed protocol. 

2.7.4 Normalisation of muscular amplitude values 

Regardless of the feedback system selected, the main variable reported to ascertain how hard a 

muscle is working is the peak amplitude of the EMG signal. It has long been suggested that some 

form of normalisation should be applied to these measures to facilitate comparison between 

participant activation levels (Bolgla and Uhl, 2007; Lehman and McGill, 1999; Mirka, 1991), between 

two different muscles or ipsilateral sides of the same participant (Lehman and McGill, 1999) and to 

allow for comparison of results against previously published studies (Soderberg and Knutson, 2000). 

Several methods have been proposed for the purpose of EMG amplitude normalisation in cycling but 

there seems to be little agreement on which is most suitable (Fernandez-Pena, Lucertini and Ditroilo, 

2009; Norcross, Blackburn and Goerger, 2010). 

Traditionally, normalisation has been achieved by expressing the recorded amplitude as a proportion 

or a percentage of the peak amplitude recorded during an isometric maximal voluntary contraction 

(iMVC) of the same muscle (Burden, 2007). There are numerous examples of this approach (eg. 

Arokoski et al., 1999; Lobbezoo et al., 1993; Smith et al., 2004) and it has been demonstrated to be 

reliable (Dankaerts et al., 2004; Kollmitzer et al., 1999) with recommendations by both ISEK (Merletti 
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et al., 1999a) and the SENIAM project (Merletti et al., 1999b). Despite this, there are a number of 

criticisms to outline here.  

Inherent within the use of iMVCs is the assumption that participants can actually perform an effort 

which elicits a maximal isometric muscular contraction. This may not be true, especially if they are 

not trained and well-motivated (Fernandez-Pena, Lucertini and Ditroilo, 2009). Additionally, despite 

Allen et al. (1995) concluding that most participants were able to maximally activate their muscles 

during iMVCs they warned that the ability to consistently do so varied. Ekstrom, Soderberg and 

Donatelli (2005) concurred that no one muscle test produced an accurate iMVC for all individuals. 

More problematic is that outputs from this normalisation method in excess of 100 per cent have 

been recorded (e.g., Jobe et al., 1984, reported peak amplitude at 226% of iMVC) suggesting that it 

may not actually be a valid representation of a participant’s maximal contractile ability. 

In response to this criticism, normalisation against sub-maximal isometric contraction was advocated 

by De Luca (1997) and adopted by Hunt et al. (2003) and Dankaerts et al. (2004). The use of peak 

amplitude values taken from contractions that are less than 80 per cent iMVC to provide a more 

stable reference value was found to be more reliable in between-days repeated measures, but it was 

concluded that correctly determining the relative sub-maximal loads for every muscle is difficult 

(Dankaerts et al., 2004).  

Burden (2007) raised another potential issue with the use of iMVCs when he questioned whether, as 

most tasks in sport and exercise involve non-isometric contractions, it is appropriate to use iMVCs, 

regardless of intensity, to normalise amplitude from dynamic contractions. This is a view shared by 

Clarys and Cabri (1993) and Prilutsky et al (1998) who had previously suggested that a dynamic 

activity would be a more suitable reference value and Rouffet and Hautier (2007) who underlined 

that, when dealing with sports movements, the EMG profile should be the expression of the dynamic 

involvement of specific muscles.  

This conflict of methods endures as some authors (e.g. Burden and Bartlett, 1999 and Burden et al., 

2003) showed that the use of Isokinetic MVCs showed only minor differences compared to Isometric 

MVCs, while others have begun investigating sport specific approaches to normalisation. For 

example, Hunter et al. (2002) compared four normalisation protocols to be used within cycling. 

Three conditions were designed to elicit an iMVC and the fourth was a dynamic pedalling action 

against a constant load, which was repeatedly increased until the subject could no longer complete a 

full revolution of the pedal. Their results revealed that iMVCs were greatest when performed on an 
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isometric leg extension dynamometer and, therefore, concluded that this was a more appropriate 

method of normalisation than a cycling specific activity.  

In contrast, Fernandez-Pena, Lucertini and Ditroilo (2009) presented a maximal isokinetic protocol 

(MIP) of normalisation in cycling that required 10 performances of a 6-second, maximal effort 

pedalling trial at a fixed cadence of 80 rev·min-1. Having compared the MIP results against a range of 

sub-maximal workloads they concluded that it represented a suitable normalisation procedure 

because the contribution of the tested muscles was similar for maximal and submaximal conditions, 

the pedalling frequency, posture and joint angle ranges of the cyclist matched in both conditions and 

the type and relative timing of muscular contractions were also similar in both.  

Initially this would seem to present an ideal normalisation procedure, especially when considering 

that this allows normalisation values for all muscles of interest to be assessed at the same time, 

rather than using an iMVC method which requires a separate test each muscle. However, as the 

authors note, there are some limitations. Firstly, both the MIP and submaximal trials were 

performed at 80 rev·min-1 despite it being shown that a cadence of 100–115 rev·min-1 is more often 

related to maximal power output (Baron, 2001; Baron et al., 1999; Sargeant et al., 1981). This leads 

the authors to recommend that this normalisation is only suitable for submaximal cycling exercises 

performed at the same cadence as the MIP.  

Additionally, one of the great strengths that Fernandez-Pena, Lucertini and Ditroilo (2009) claimed 

with their method is that it could be performed on exactly the same equipment as the following 

submaximal test. This initially sounds useful but, in reality, restricts investigations to being 

conducted on an ergometer with an isokinetic mode and not, as required in the later stages of this 

thesis, in the more ecologically valid setting of a field test using the participant’s own bike (see 

Section 3.2.3).  

Ultimately the decision was taken to not perform normalisation tests for this investigation due to 

the range of reasons explained above, the lack of agreement on a suitable method and mainly 

because the focus of this investigation is on the variability of peak amplitude and not the actual 

finite values themselves. As shown earlier, the amplitude from surface EMG electrodes does not 

suffer from the progressive and significant decreases that indwelling electrodes do (Reeves, Starbuck 

and Nester, 2020); thus, comparing within a prolonged performance within a single participant 

should be valid and was adopted as the major method of analysis for this investigation. 

Additionally, because the emphasis is on the variability of muscular recruitment and not the finite 

levels, results can be reported using the co-efficient of variation (CV%). This provides a degree of 
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normalisation (Bedeian and Mossholder, 2000) as CV% was specifically invented to eliminate the 

influence of the finite magnitude of a value on variability (Pearson, 1897). It does so by relating the 

spread of a data set relative to its own mean and this produces a value which is unitless and 

divorced from any scale of measurement (Simpson, Roe, & Lewontin, 1960). This, therefore, negates 

the need for normalising EMG values at the recording stage as the variability in muscular 

recruitment can be expressed as a percentage and effectively normalised at the reporting stage. 

  

2.7.5 Measures of fatigue  

Hug (2011) stated that a potential strategy to counteract the effects of fatigue consists of modifying 

the timing of activation with the muscles involved. If this is the case, then it is important to discuss 

whether fatigue can be accurately assessed using EMG, or else we run the risk of building 

judgements of variability off measures which are, themselves, inherently flawed. 

There are a range of studies which have focused on alterations in EMG activity level in the lower 

limb muscles during sub-maximal fatiguing pedalling exercises (Petrofsky, 1979; Housh et al., 2000; 

Hautier et al., 2000; Billaut et al., 2005) and have mostly used measures of amplitude of muscular 

activity and frequency of muscular activation as indicators of fatigue. The exact terms given to these 

variables differs between authors, but the historical consensus has been that an increased amplitude 

of muscular activation represents an additional recruitment of muscle fibres to compensate for the 

decrease in the force of contraction that occurs in fatigued muscle fibres (Edwards and Lippold, 

1956) and a reduced frequency of activation demonstrates the slowing of muscle fibre action 

potential conduction velocity (Linstrom et al., 1970). These frequency-based variables have been 

shown to be particularly important when measuring fatigue as they are more sensitive to changes 

than amplitude values obtained via a root mean square plot (Merletti, Knaflitz and De Luca, 1990). 

This established view has been challenged, however, as studying a muscle in isolation does not 

address the ability to alter the coordination of multiple muscles in response to fatigue rather than a 

participant being hindered by changes within a specific muscle (Hug, 2011). Authors who prescribe 

to this school of thought suggest that an increase in the amplitude of EMG activity is not necessarily 

linked to muscle fatigue and could have been induced by having to compensate for a different 

muscle. Likewise, they suggest that the absence of any change does not necessarily indicate that 

there is no decrease in the production of force as the contractile properties of the muscle may have 

been altered by fatigue.  
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An example of the difficulties interpreting EMG results can be seen when considering the results of 

Dorel et al. (2009) who reported a 29% increase in the EMG activity level for gluteus maximus and a 

15% increase for biceps femoris during a constant load pedalling exercise. Without measurement of 

data from every lower limb muscle involved in the movement, it is possible to interpret this increase 

as either a systemic or a local level change. That is, it could be a result of a change of muscle 

coordination strategy to take more of the load in the glute/hamstring complex to compensate for 

fatigue in other muscles or a change of local muscle fibre recruitment as a direct result of local 

fatigue in these muscles. It is also possible that both mechanisms are at play here, meaning that 

either interpretation is, at least to some degree, flawed. 

Lepers et al. (2002) attempted to address this difficulty in interpretation by employing alternative 

methods of studying muscular fatigue during a 5-hour exercise cycle at 55% of the maximal aerobic 

power. These were designed to focus more closely on the neural (M-Wave, voluntary activation, 

maximal activity level) and contractile (muscular twitch) properties of a muscle group to make 

interpretation of fatigue easier. Their results suggested that the contractile properties of the Vastus 

Lateralis are significantly altered after the first hour, whereas the central drive was more impaired 

toward the latter stages, but practical considerations have stopped these methods being widely 

adopted as it is very difficult to obtain this level of information from multiple muscle groups 

simultaneously. 

Instead, authors have focused on muscle coordination changes (Farina et al. 2004) and investigation 

of muscular activation at specific points throughout the pedal revolution (von Tscharner, 2002) in 

order to quantify fatigue. These approaches will certainly be considered in the later stages of this 

thesis and an approach which takes a system level approach (i.e. focusses on co-ordination rather 

than individual muscle contractions) seems appropriate given the theoretical underpinning of this 

thesis. 
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3. STUDY ONE: Intra-individual variability of sagittal plane kinematics during indoor TT 

3.1 Introduction 

Cycling is a worldwide pastime with more than 5 million people over the age of 16 cycling at least 

once a month in England alone (Cycling UK, 2019). As such, cycling has received significant scientific 

attention with the most common method of motion analysis being to focus on individual lower 

extremity joints (e.g. Ericson et al., 1988; Caldwell et al., 1999), specifically in the sagittal plane due 

to the lack of motion observed in the frontal or transverse planes (Umberger and Martin, 2001). 

Although this approach can provide valuable information about joint motion, it does not consider 

that the motion of one segment subsequently influences the motion of an adjacent segment, and 

therefore does not effectively capture the complexity of the coordinated motion of components of 

the body (Bartlett et al., 2007). The acknowledgement of the coupling relationship between 

segments has been well established in gait based kinematic investigations (eg. Rosenbaum, Becker, 

Wilke and Claes, 1998; DeLeo, Dierks, Ferber and Davis, 2004; Ferber, Davis and Williams, 2005) but 

has only more recently been recognised as crucial in the analysis of human movement within the 

field of cycling by Chapman et al. (2009). 

 

Aside from this, there are also some traditional assumptions inherent within the literature which has 

studied intra-individual movement variability. Firstly, it has been historically assumed that intra-

individual movement variability is either detrimental to normal function or purely evidence of 

random noise within the neuromuscular or measurement system (Davids, Glazier, Araújo and 

Bartlett (2003), Van Emmerick and Van Wegen (2000), Hamill, van Emmerik, Heiderscheit, and Li 

(1999) and Newell and Corcos (1993). This has led to the hypothesis that this “noise” may result in 

an inability to convey consistent results and, therefore, that it should be discounted. 

 

Linked to this is the second assumption that movement patterns for skilled performers are invariant 

(Bartlett, Wheat and Robins, 2007). Although this assumption has significant support from the field 

of motor learning research, which emphasises decreased variation in performance as a hallmark of 

the learning process, there is growing evidence that intra-individual movement variability may 

perform a functional role in task performance (Van Emmerik, Hamill, and McDermott, 2005). This is 

especially true when the task requires adaptability of complex motor patterns within dynamic 

performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006) and 

may enable greater adjustment for both intrinsic and extrinsic factors which may influence an 

athlete’s performance.  
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The idea of movement variability as a functional element of skill performance has its groundings in 

dynamical movement systems theory which aims to describe systems which are able to constantly 

adapt to the varying demands of a task (Williams, Davids, and Williams, 1999). Evidence of such 

adaptations in skilled performers have been established in shooting (Arutyun, Gurfinkwl and Mirskii, 

1968; Scholz, Schöner and Latash, 2000), Basketball (Miller, 2002; Button, Macloed, Sanders and 

Coleman, 2003 and Robins, Wheat, Irwin, and Bartlett, 2006), triple jump (Wilson, Simpson, Van 

Emmerik and Hamill, 2008), cricket fast bowling (Peterson, Pyne, Portus, Karppinen and Dawson, 

2009), golf (Knight, 2004; Bradshaw et al., 2009; Glazier, 2011; Langdown, Bridge, and Li, 2012 and 

Tucker, Anderson and Kenny, 2013) and water polo (Taylor, Landeo and Coogan, 2014).  

A number of these authors concluded that, from a dynamical systems perspective, variability may 

play a functional role in producing a more consistent sporting outcome despite the altering demands 

placed on the performer (Van Emmerik, Hamill and McDermott, 2005) and therefore should be 

viewed as a form of “essential noise” (Davis, Shuttleworth, Button, Renshaw and Glazier, 2004).  

Despite this body of evidence, there appears to have been little research conducted using either the 

dynamical systems theory approach or focussing on intra-individual movement variability within 

cycling with, to the best of the author’s knowledge, only one study specifically focussing on this 

approach (Sides and Wilson, 2012). 

Although initial reading of their findings suggests that Sides and Wilson (2012) support the 

traditional motor learning theories in viewing variability as indicative of an unskilled performance, 

there are some potential limitations with their study relating to the participants recruited, the data 

collection methods and the way in which the data was analysed which could raise questions about 

the validity of their findings. This, coupled with the lack of research in the area and their 

recommendations for future research to expand the investigation of intra-individual movement 

variability, provides the rationale for the present study which aims to investigate if lower extremity 

intra-individual movement variability varies in cyclists of differing performance levels and if this plays 

a functional role in the completion of a simulated indoor time trial event. 

3.2 Methods 

Participant information 

Ten trained cyclists volunteered to take part in the study (see Table 4-1). Participants all held a 

current British Cycling Race License (Category 1 n = 1, Category 2 n = 2, Category 3 n = 2, Category 4 

n = 5) and Mean training load was self-reported as 10.85 ± 4.21 hours or 156.00 ± 48.35 miles per 

week. Participants maintained their normal diet and daily activity patterns throughout the testing 
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period and provided written informed consent before taking part in the study. Local ethical approval 

was provided by the University of Winchester. 

Table 3-1. Participants' descriptive characteristics 

 Age 

(Years) 

Height 

(Metres) 

Mass 

(Kg) 

Maximum one 

minute Power 

Output 

(W) 

Maximum one 

minute Power 

Output  

(W·Kg-1) 

V̇O2 max 

(ml·Kg·min-1) 

 

Mean 31.9 1.8 72.10 365.5 5.13 73.21 

Standard deviation 10.3 0.1 9.40 69.2 0.53 12.24 

 

Testing procedure and instrumentation 

Graded exercise test 

Initial testing consisted of a graded exercise test (GXT) to establish V̇O2max values for each 

participant to ensure physiological similarities across the sample (See Table 4-1). An 

electromagnetically braked cycle ergometer (SRM, Germany) was used to conduct a continuous 

incremental cycling GXT where workload was increased by 5 W per 15 seconds. Initial workload was 

adjusted according to participant’s self-reported estimate of maximal power output so that the total 

duration of the GXT was between 8 and 10 minutes. Criteria for termination of the maximal GXT was 

primarily based on volitional exhaustion.   

Throughout the GXT, online respiratory gas analysis was performed using a breath-by-breath 

automatic gas exchange system (MetaLyzer 3B, Cortex, Germany) following volume and gas 

calibration. HR was monitored using a wireless chest strap telemetry system (Polar Electro T31, 

Kempele, Finland) as well as ratings of perceived exertion every minute using the Borg 6-20 RPE 

scale. 

Time trial events 

Subsequently, participants visited the laboratory on 3 occasions, separated by a minimum of 48 h to 

allow full recovery from the previous trial. During each testing session, reflective markers (Qualisys, 

Gothenburg, Sweden) were attached to the Greater Trochanter, Lateral epicondyle of the femur, 

Lateral malleolus and 5th metatarsal on both sides of the participant’s body as well as a reflective 

marker on each pedal. Participants subsequently undertook a self-directed warm up followed by a 
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simulated 10-mile (16-km) time trial and self-directed cool down. Time trials were conducted from a 

standing start and participants were given free choice of gearing and cadence throughout. 

All trials were conducted in an air-conditioned laboratory using a standard Wattbike Pro cycle 

ergometer (Wattbike Ltd., Nottingham, UK), with PowerTap P1 pedals (CycleOps, Madison, WI, USA). 

Participants used their own cycling shoes and those who normally rode with cleats incompatible 

with the PowerTap pedals had their cleat position replicated with 3 bolt Kéo cleats (Look cycle 

international, Nevers, France). The ergometer was set to, as closely as possible, replicate the 

dimensions of each participant’s own bicycle and participants were given access to any data they 

would normally ride with to monitor their cycling effort (cadence, power output etc.).  

A 12-camera motion capture system (Qualisys Oqus 300+, Gothenburg, Sweden) sampling at 500 Hz 

recorded three-dimensional kinematic data at the hip, knee and ankle throughout each trial via 

Qualisys Track Manager (Version 2019.2). Perceived exertion was recorded throughout each time 

trial event using Borg’s RPE scale. This was conducted at 2-minute intervals after an initial 5 minutes 

of riding had been completed. Time trial completion time was retrieved from the Wattbike using 

Wattbike Expert software version 2.60.20 (Wattbike Ltd., Nottingham, UK).  

Data analysis 

One time trial was selected per participant for analysis. This was the last performance to allow the 

first two to act as familiarisation sessions unless, due to technical errors with marker adhesion, there 

was insufficient kinematic data to make this feasible. In this case, the most complete recording was 

used for analysis. 

Sagittal plane joint angle and joint angular velocities at the hip, knee and ankle were recorded for 10 

complete pedal revolutions at 5 minute intervals throughout the time trial. One revolution was 

identified as the time between the pedal reaching the top dead centre (0°) on two consecutive 

occasions. This was defined as the point where the pedal marker reached its maximal value in the z-

axis of the global co-ordinate system. Joint angle and angular velocity were then interpolated to 100 

data points using a cubic spline technique. 

The interpolated data was then used to calculate Continuous relative phase (CRP) in a similar way to 

Sides and Wilson (2012) to provide intra-limb couplings at: (i) knee flexion/extension–ankle 

plantarflexion/dorsiflexion (KA) and (ii) hip flexion/extension–knee flexion/extension (HK).  

CRP was defined as the difference between the normalised phase angles of the coupling throughout 

the revolution, measured in degrees (°). CRP was reported on a linear scale of 0°-180° with 0° 
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corresponding to a perfectly in-phase coupling, meaning that the phase angles for the two motions 

are identical, and 180° representing a perfectly anti-phase coupling.  

CRPv Testing 

In order to replicate the analysis methods of Sides and Wilson (2012) initial testing involved the 

calculation of continuous relative phase variability (CRPv) which was defined as the standard 

deviation at each data point across the 10 revolutions for each participant. This process was 

repeated for data sampled at 5min, 10min, 15min and 20min throughout the time trial effort.  

Each revolution was subsequently divided into four phases as performed Dorel, Couturier and Hug 

(2009) to produce separate top, drive, bottom and recovery phases (see Figure 4-2) and mean CRPv 

values per phase were calculated for each.  

 

 

Whole group CRPv testing  

The first rounds of analysis were conducted using the whole participant group to correlate each 

participant’s mean CRPv per pedal phase with the time taken to successfully complete the time trial 

(TimeTT). This was conducted using Pearson’s Product moment correlation co-efficient and was 

repeated for each coupling (HK and KA) of each leg (Left and Right) at each time point (5min, 10min, 

15min and 20min) throughout the time trial.  

Subsequently, a three-way Analysis of Variance was conducted to test for differences between time 

points (5min, 10min, 15min and 20min), legs (left and right) and couplings (HK and KA) as well as the 

interactions between these factors. This was repeated for each phase of the revolution (top, drive, 

Top 

Drive Recovery 

Bottom 

 

Figure 3-1. The four phases per pedal revolution.  
(Adapted from Dorel, Couturier and Hug (2009) 
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bottom and recovery) to assess whether the amount of movement variability displayed by 

participants varied throughout the time trial.  

Split group CRPv comparisons  

Following the initial testing, the group was split into “upper” and “lower” groups at the point of the 

largest difference in TimeTT (between the 5th and 6th ranked riders). This gave an equal split of 

participants between groups (n= 5 in each). The statistical procedures outlined for whole group 

testing were then repeated considering the upper and lower groups separately.   

In addition, a series of one-way independent samples ANOVAs were conducted to investigate 

differences between upper and lower groups in terms of CRPv values in each pedal phase (top, drive, 

bottom and recovery) and over time (5min, 10min, 15min, 20min).  

CV% testing 

To offer an additional measurement of variability, the coefficient of variation (CV%) of CRP values 

was calculated using the formula below: 

Co-efficient of variation = (standard deviation/mean)*100 

This produced a percentage value (CV%) which represents the amount of variance each participant 

displayed in their joint couplings between the measurement time points (5min, 10min, 15min and 

20min) throughout the simulated time trial. Conducting this additional calculation was designed to 

overcome the influence of the finite magnitude of a value on variability (Pearson, 1897) and negate 

the tendency of standard deviation to unavoidably increase as the range of the measure increases. 

CV% is a unitless value and is divorced from any scale of measurement (Simpson, Roe, & Lewontin, 

1960) and is therefore suggested as a clearer comparison of the true variance displayed.  

A Pearson’s product moment correlation coefficient was calculated to test for the relationship 

between CV% and the time taken to complete the simulated 10-mile time trial (TimeTT) for all riders.  

This process was repeated using the same pedal revolution divisions described above and, as before, 

initial testing was conducted using the whole participant group to correlate each participant’s 

coefficient of variation in continuous relative phase values (CV%) against the time taken to 

successfully complete the time trial (TimeTT). This was conducted using Pearson’s Product moment 

correlation co-efficient and was repeated for both Hip-Knee and Knee-Ankle joint couplings. This was 

specifically designed to ascertain whether a relationship existed between the amount of variation a 

cyclist showed between measurement points and the time taken for them to complete the time 
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trial. It was theorised that the ability to be more variable in their movements should aid a cyclist’s 

overall performance when faced with a task where the constraints can be altered. 

All statistical testing was performed using IBM SPSS statistics version 24 (IMB Corporation, New 

York, NY, USA), with a significance level set at p < 0.05. 

3.3 Results 

Mean and Standard Deviation of CRPv values for the whole group can be seen in Table 4-2. The same 

data for the upper and lower groups is displayed in Tables 4-3 and 4-4 respectively.
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Table 3-2. Mean (± Standard Deviation) CRPv values (°) across 10 pedal revolutions for whole group data. 

 

 

 

 

 

 

 

 

 5 minutes 10 minutes 15 minutes 20 minutes 

Left leg Right leg Left leg Right leg Left leg Right leg Left leg Right leg 

HK KA HK KA HK KA HK KA HK KA HK KA HK KA HK KA 

P
e

d
al

 p
h

as
e 

Top 2.35 

(±0.80 ) 

29.01 

(±10.41) 

4.26 

(±2.05) 

28.46 

(±10.32) 

3.53 

(±2.09 ) 

32.43 

(±14.60) 

3.87 

(±2.21) 

26.37 

(±10.16) 

2.22 

(±0.47) 

28.33 

(±9.45) 

4.39 

(±2.00) 

41.79 

(±17.45) 

2.58 

(±0.23) 

23.43 

(±5.97) 

2.82 

(±1.38) 

33.93 

(±7.85) 

Drive 1.68 

(±0.62) 

19.17 

(±9.65) 

3.03 

(±2.21) 

20.43 

(±11.22) 

2.66 

(±1.75) 

19.07 

(±6.57) 

2.55 

(±1.15) 

18.23 

(±10.84) 

1.79 

(±0.55) 

17.28 

(±4.07) 

2.96 

(±1.70) 

21.66 

(±15.08) 

2.33 

(±0.79) 

15.08 

(±6.44) 

2.05 

(±0.85) 

19.16 

(±11.35) 

Bottom 2.27 

(±1.00) 

17.88 

(±9.46) 

3.82 

(±2.24) 

14.85 

(±7.89) 

3.03 

(±1.28) 

22.22 

(±9.61) 

3.44 

(±1.98) 

13.37 

(±4.05) 

2.60 

(±0.80) 

17.15 

(±5.01) 

4.15 

(±2.63) 

13.09 

(±4.14) 

3.04 

(±1.35) 

25.07 

(±12.34) 

2.95 

(±2.18) 

17.31 

(±7.32) 

Recovery 2.60 

(±2.02) 

19.91 

(±8.47) 

6.43 

(±7.91) 

23.85 

(±9.78) 

3.55 

(±1.84) 

29.64 

(±12.38) 

5.33 

(±7.83) 

22.75 

(±7.62) 

2.96 

(±1.30) 

23.12 

(±12.79) 

6.42 

(±7.32) 

30.52 

(±13.91) 

2.28 

(±0.44) 

17.24 

(±5.06) 

5.60 

(±8.30) 

29.00 

(±13.23) 
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Table 3-3. Mean (± Standard Deviation) CRPv values (°) across 10 pedal revolutions for Upper group data. 

 

Table 3-4. Mean (± Standard Deviation) CRPv values (°) across 10 pedal revolutions for Lower group data. 

 

 5 minutes 10 minutes 15 minutes 20 minutes 

Left leg Right leg Left leg Right leg Left leg Right leg Left leg Right leg 

HK KA HK KA HK KA HK KA HK KA HK KA HK KA HK KA 

P
e

d
al

 p
h

as
e 

Top 2.36 

(±0.86) 

31.55 

(±13.39) 

4.88 

(±2.42) 

22.59 

(±4.85) 

3.46 

(±3.16) 

27.53 

(±13.48) 

2.63 

(±1.00) 

18.50 

(±7.54) 

1.80 

(±0.03) 

24.50 

(±0.30) 

5.74 

(±1.84) 

36.50 

(±20.61) 

2.45 

(±0.28) 

24.98 

(±11.26) 

1.69 

(±0.09) 

24.15 

(±0.41) 

Drive 1.67 

(±0.46) 

17.65 

(±7.40) 

3.86 

(±2.77) 

19.19 

(±7.60) 

2.58 

(±2.62) 

16.97 

(±7.11) 

2.55 

(±1.22) 

13.89 

(±6.22) 

1.58 

(±0.49) 

18.62 

(±1.55) 

4.06 

(±1.67) 

20.12 

(±9.97) 

2.81 

(±0.24) 

18.02 

(±11.17) 

1.39 

(±0.11) 

15.58 

(±5.83) 

Bottom 1.95 

(±0.60) 

20.57 

(±12.77) 

4.25 

(±2.81) 

16.45 

(±9.51) 

2.83 

(±1.70) 

21.80 

(±11.61) 

2.52 

(±1.05) 

11.50 

(±2.56) 

2.12 

(±0.78) 

20.09 

(±5.85) 

4.83 

(±3.07) 

13.42 

(±2.17) 

3.66 

(±2.35) 

34.62 

(±13.77) 

1.62 

(±0.12) 

21.38 

(±16.38) 

Recovery 2.09 

(±1.06) 

19.36 

(±9.86) 

5.07 

(±4.00) 

24.34 

(±13.07) 

2.85 

(±1.24) 

22.26 

(±13.55) 

1.97 

(±0.80) 

18.56 

(±6.67) 

2.58 

(±1.59) 

13.53 

(±5.37) 

4.83 

(±3.98) 

27.32 

(±18.11) 

2.27 

(±0.84) 

13.21 

(±3.84) 

1.37 

(±0.04) 

17.24 

(±1.74) 

 5 minutes 10 minutes 15 minutes 20 minutes 

Left leg Right leg Left leg Right leg Left leg Right leg Left leg Right leg 

HK KA HK KA HK KA HK KA HK KA HK KA HK KA HK KA 

P
e

d
al

 p
h

as
e 

Top 2.34 

(±0.84) 

26.46 

(±6.94) 

3.64 

(±1.63) 

34.33 

(±11.40) 

3.59 

(±1.12) 

36.35 

(±15.71) 

4.86 

(±2.51) 

32.66 

(±7.23) 

2.43 

(±0.43) 

30.24 

(±11.58) 

3.56 

(±1.83) 

46.03 

(±15.49) 

2.66 

(±0.20) 

22.39 

(±1.94) 

3.27 

(±1.40) 

37.84 

(±5.05) 

Drive 1.69 

(±0.81) 

20.70 

(±12.22) 

2.21 

(±1.27) 

21.67 

(±14.89) 

2.72 

(±0.97) 

20.75 

(±6.35) 

2.55 

(±1.24) 

21.70 

(±13.11) 

1.90 

(±0.62) 

16.61 

(±5.00) 

2.07 

(±1.21) 

22.88 

(±19.39) 

2.00 

(±0.90) 

13.12 

(±2.47) 

2.32 

(±0.88) 

20.59 

(±13.26) 

Bottom 2.60 

(±1.28) 

15.20 

(±4.50) 

3.40 

(±1.71) 

13.26 

(±6.57) 

3.19 

(±1.02) 

22.56 

(±9.13) 

4.18 

(±2.35) 

14.87 

(±4.64) 

2.84 

(±0.80) 

15.68 

(±4.67) 

3.62 

(±2.43) 

12.82 

(±5.53) 

2.63 

(±0.50) 

18.70 

(±7.57) 

3.49 

(±2.43) 

15.68 

(±1.28) 

Recovery 3.11 

(±2.72) 

20.46 

(±7.97) 

7.79 

(±10.97) 

23.37 

(±6.61) 

4.11 

(±2.17) 

35.55 

(±8.42) 

8.01 

(±10.09) 

26.10 

(±7.16) 

3.15 

(±1.35) 

27.92 

(±13.08) 

7.69 

(±9.53) 

33.08 

(±11.07) 

2.29 

(±0.16) 

19.93 

(±4.09) 

7.29 

(±9.52) 

33.71 

(±12.85) 
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Relationship testing 

Of the 64 correlations run to test for a relationship between CRPv and TimeTT for the whole group 

data, only the right leg Hip-Knee coupling at fifteen minutes showed a statistically significant 

(p<0.05) correlation. These results were r = -0.777, p = 0.014 for the top phase and r = -0.666, p = 

0.050 for the drive phase, showing a statistically significant large negative correlation between CRPv 

and TimeTT at these points. All other correlations were non-statistically significant at an alpha level of 

p<0.05. 

Once participants were split into upper and lower groups, the correlation of right leg Hip-Knee 

coupling at 15 minutes with TimeTT remained statistically significant in the top phase of the 

revolution for the upper group (r = -0.975, p = 0.025) but was no longer significant for the lower 

group. The correlation of right leg Hip-Knee coupling at 15 minutes for the drive phase was no longer 

statistically significant for either group. 

In addition, the lower group showed statistically significant correlations between TimeTT and the 

following couplings: 

Right Leg Knee-Ankle at 5 minutes in the top phase (r = -0.966, p = 0.008) 

Right Leg Knee-Ankle at 5 minutes in the bottom phase (r = 0.922, p = 0.026) 

Left Leg Knee-Ankle at 15 minutes in the top phase (r = -0.950, p = 0.050) 

Left Leg Knee-Ankle at 20 minutes in the recovery phase (r = 0.988, p = 0.042) 

All other correlations were statistically non-significant for both the upper and lower groups. 

Difference testing 

For the whole group testing, there was a significant difference (p<0.005) between HK and KA 

couplings during all pedal revolution phases with the KA coupling showing consistently higher levels 

of CRPv across all time points than the HK coupling. 

Once participants were split into upper and lower groups, this remained the case for the lower 

group while only the drive phase showed a significant difference (p= 0.013) between couplings for 

the upper group. 

Whole group data showed a significant difference (p=0.014) between legs during the drive phase 

with the right leg showing consistently greater levels of variability compared to the left at 5, 15 and 

20 minute time points. This difference was no longer statistically significant within either group 
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following the split of data, despite there also being no statistically significant differences between 

the two groups during the drive phase. 

When comparing CRPv levels between the two groups, there was a statistically significant difference 

in the right leg Knee-Ankle coupling at 10 minutes during the top phase (p=0.024, Upper group = 

18.50 o ± 7.54, Lower group = 32.66 o ± 7.23) and again at 20 minutes (p=0.015, Upper group = 24.15 o 

± 0.41, Lower group = 37.84 o ± 5.05). There were no other statistically significant differences 

between the groups. 

There were no significant differences (p>0.05) shown in CRPv over the course of the time trial when 

comparing between time points. This was the case for whole group, upper group and lower group 

data.  

CV% Relationship testing 

The correlation coefficients and significance values for the relationship between CV% and TimeTT can 

be seen in Table 4-5. 

Table 3-5. Correlation results for CV% of CRP values against TimeTT. 

Analysis Mode Joint Coupling Phase r P 

Full revolution H-K  -0.375 0.285 

 K-A  -0.126 0.728 

Two-phase H-K Power -0.218 0.544 

  Recovery -0.096 0.793 

 K-A Power -0.144 0.691 

  Recovery -0.489 0.152 

Four-phase H-K Top -0.017 0.962 

  Drive 0.019 0.958 

  Bottom 0.59 0.073 

  Recovery -0.072 0.843 

 K-A Top -0.378 0.281 

  Drive 0.082 0.821 

  Bottom -0.04 0.907 

  Recovery -0.505 0.136 
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As seen in Table 4-5, all observed correlations were non-statistically significant at an alpha level of 

p<0.05. All relationships were negative with the exception of the Hip-Knee joint coupling during the 

drive and bottom phases and the Knee-Ankle coupling during the drive phase when the revolution 

was split into four phases. 

3.4 Discussion 

The aim of the current study was to investigate if lower extremity intra-individual movement 

variability varies in cyclists of differing experience and if this plays a functional role in the completion 

of a simulated indoor time trial event. 

Skill level was originally to be inferred by grouping participants according to the different categories 

they were competing at within the established competitive structure set out by British Cycling. 

Participant’s varying fitness levels could then be controlled by recruiting participants who were 

physiologically similar in terms of generic measures of physical fitness. Although it could be argued 

that the group was reasonably physiologically homogenous (Power output = 5.13 ± 0.53 W·Kg-1, V̇O2 

max = 73.21 ± 12.24 ml·Kg·min-1) grouping the 4th category riders together, for example, would have 

created a group which included the 2nd, 4th, 7th, 8th and 10th ranked riders in terms of finishing 

time. This clearly shows that performance levels in a simulated time trial cannot be predicted by race 

license category and therefore grouping participants according to this criteria was deemed 

unsuitable. Instead, this investigation used the time taken by each participant to complete the 

simulated time trial effort was used as an indicator of skill level. 

Relationship testing 

The general lack of statistically significant correlations between CRPv couplings and TimeTT shows 

that there is little in the way of an established relationship between the level of intra-individual 

movement variability employed by participants and the performance outcome. The two significant 

correlations which were found for the whole group, however, were both negative (r = -0.777, p = 

0.014 and r = -0.666, p = 0.050) suggesting that a greater level of movement variability may be linked 

to a shorter duration for the time trial event.  

This is in direct contradiction of Sides and Wilson (2012) who concluded that movement variability is 

not beneficial to cycling performance. Instead, they posit that out-of-phase motion has previously 

been considered to reflect a less stable coordinative state (Scholz, 1990) and that this may be 

indicative of the reduced effective force application as highlighted by Sanderson and Black (2003). 

Once participants were split into upper and lower groups in order to further investigate the 

behaviours of different skill levels, the upper group only showed one statistically significant 
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correlation (r = -0.975, p = 0.025) with the lower group showing four statistically significant 

correlations, none of which had been present in the whole group analysis. Of these four, two 

showed a positive relationship (Right leg Knee-Ankle at 5 minutes in the bottom phase and Left leg 

Knee-Ankle at 20 minutes in the recovery phase) and two showed a negative relationship (Right Leg 

Knee-Ankle at 5minutes in the top quarter and Left leg Knee-Ankle at 15minutes in the top quarter).  

Given the lack of consistency in terms of the direction of the relationship and the coupling, leg or 

time point in which the statistically significant correlations occur, it is very difficult to reliably infer 

whether there is any functional role of intra-individual movement variability from this data.  

Difference testing 

Comparing between couplings  

For the whole group testing, there was a significant difference (p<0.005) between HK and KA 

couplings during all pedal revolution phases with the KA coupling showing consistently higher levels 

of CRPv across all time points than the HK coupling. This was expected as it has long been 

established that maximum knee and hip extension occur simultaneously (Houtz and Fischer, 1959; 

Wozniak Timmer, 1991) at approximately 180o of the pedal revolution but peak ankle dorsiflexion 

occurs around 90o and peak plantarflexion at approximately 285o (Cavanagh, 1986).   

Interestingly, once participants were split into upper and lower groups, the significant difference 

between HK and KA couplings remained for the lower group while only the drive phase showed a 

significant difference (p= 0.013) between couplings for the upper group. This could potentially be 

explained if the upper group were performing more of an “ankling” motion. 

Ankling is a technique which involves pushing the pedal across the top of the pedalling cycle (0o) 

with the foot in the dorsi-flexed position and pulling across the 180o point of the cycle with the foot 

plantar-flexed (Faria and Cavanagh, 1978). This has been demonstrated to occur more in elite 

cyclists than novices (Chapman et al., 2009) and would potentially produce a more in-phase motion 

in terms of a Knee-Ankle coupling, explaining the lack of significant differences between couplings in 

the upper group’s data.  

Comparing between legs 

Whole group data showed a significant difference (p=0.014) in the CRPv levels between legs during 

the drive phase with the right leg showing consistently greater levels of variability compared to the 

left at 5, 15 and 20 minute sampling windows. This initially suggests that leg dominance has some 

influence on the movement patterns, but this difference is no longer present within either group 
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following the split of data. Given that there was also no statistically significant differences between 

the two groups in terms of CRPv levels during the drive phase it must be recommended that this is 

an area for further investigation as it was by both Carpes, Mota and Faria (2010) and Sides and 

Wilson (2012) who identify intra-limb co-ordination and symmetry as under researched and worthy 

of further investigation. 

Comparing between time points 

It was initially thought that the level of CRPv shown by participants may change over time based on 

work by Amoroso, Sanderson and Henning (1993), Sanderson and Black (2003), and Bini, 

Diegenthaeler and Mota (2010) all of whom reported changes in the kinetics or kinematics of the 

cycling action as a result of fatigue. In the present study participants reported a mean RPE of 18.6 ± 

1.7 (a rating of extremely hard to maximal exertion) upon completion of the time trial so it is fair to 

assume that a level of fatigue was present but this did not manifest in any significantly different 

levels of CRPv across time points. This was true regardless of whether whole group, upper or lower 

group data was being investigated. This is perhaps not overly surprising given the suggestion that the 

effect of fatigue on movement variability cannot be generalised across athletes (Trezise, Bartlett and 

Bussey, 2011) but it should be noted that this suggestion comes from a dual case study of sprinters 

so it’s application here is questionable. 

Comparing between groups 

The final comparison of CRPv levels between the upper and lower groups showed there was a 

statistically significant difference in the right leg Knee-Ankle coupling at 10minutes during the top 

phase (p=0.024, Upper group = 18.50o ± 7.54, Lower group = 32.66o ± 7.23) and again at 20minutes 

(p=0.015, Upper group = 24.15o ± 0.41, Lower group = 37.84o ± 5.05). These results do somewhat 

agree with Sides and Wilson (2012) in that the lower group shows greater levels of variability in both 

cases. With only two of sixty four comparisons resulting in a significant difference, however, it would 

seem ill advised to make general statements based on the strength of these results alone. 

CV% relationship testing 

The lack of any statistically significant correlations between CV% and TimeTT shows that there is little 

in the way of an established relationship between the level of intra-individual movement variability 

employed by participants and the performance outcome. The general trend, however, shows that 

the relationships reported are mostly negative in nature. Despite the majority of these relationships 

failing to reach the r = ±0.400 threshold which would allow them to be deemed as moderate 

relationships (Schober, Boer and Schwarte, 2018), their negative nature is does suggest that a 
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greater level of movement variability could potentially be linked to a shorter duration for the time 

trial event.  

This is in direct contradiction of Sides and Wilson (2012) who concluded that movement variability is 

not beneficial to cycling performance. Instead, Sides and Wilson (2012) agree with previous 

statements that variability of motion is considered to reflect a less stable coordinative state (Scholz, 

1990) and that this may be indicative of the reduced effective force application as highlighted by 

Sanderson and Black (2003). 

Summary and Limitations 

In summary of the findings above, there some limited evidence of differences in levels of intra-

individual movement variability employed by different levels of cyclist during an indoor cycling 

effort. In much the same way as Sides and Wilson (2012), it should be noted that this investigation is 

limited to only flexion/extension couplings in the sagittal plane at the expense of movements in the 

other anatomical planes but, considering the findings from a dynamical systems perspective 

highlights certain methodological limitations with the current study which may go some way to 

explaining the lack of differences reported here.  

As mentioned previously, there is growing support for the notion that intra-individual movement 

variability may perform a functional role in task performance (Van Emmerik, Hamill, and McDermott, 

2005), especially when the task requires adaptability of complex motor patterns within dynamic 

performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006). By 

using a cycle ergometer in a laboratory setting it is possible that the dynamic element of the 

performance environment has been controlled to such a degree that there isn’t enough demand 

placed on the system in order to require a variable response. That is to say, removing the task 

perturbations such as variations of road surface, weather conditions, gradient etc. may have 

unintentionally limited the amount of intra-individual movement variability the cyclists need to 

exhibit in order to complete the task. As a result, this study may not give a true representation of the 

functional role intra-individual movement variability can play. 

Linked to this is also the inherent lack of ecological validity attached to the use of a cycle ergometer 

when attempting to replicate the cycling action. Jobson et al. (2007) and Jobson, Nevill, George, 

Jeukendrup and Passfield (2008) have shown a significant difference in cycling speed and power 

output between laboratory and road conditions during time trial events and Bertucci, Grappe and 

Groslambert (2007) show more broadly crank torque profiles are significantly different when 

comparing lab and outdoor cycling conditions.   
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As a result, future research should aim to investigate the intra-individual movement variability 

employed by cyclists of differing levels during outdoor cycling in order to understand further it’s role 

within this sport.   

3.5 Conclusion 

The results presented here suggest two significant negative linear correlations between the level of 

movement variability displayed by participants and the time taken for them to complete the time 

trial. In addition, statistically significant differences in the level of movement variability displayed by 

differing levels of cyclist were seen at two time points. This suggests that there is a link between the 

level of intra-individual movement variability displayed by a cyclist and the time in which they were 

able to complete a 10-mile simulated time trial task in laboratory conditions. That this relationship is 

only evident in some cases could be due to a lack of task perturbations in the laboratory setting and 

therefore further research is needed to understand the influence of the environmental factors which 

are present during road cycling before the potentially functional role of intra-individual movement 

variability can be fully understood. 

These findings help to partially answer the overall thesis research question as they allow us, to a 

certain extent, to confirm that intra-individual movement variability can play a functional role in 

cycling. However, we cannot fully support this conclusion due to the testing environment being 

different to the competitive environment in which cycling would normally take place.   

Before investigations could move into a typical competition environment it was important to ensure 

that valid methods of data collection were being used. The investigations which were completed to 

ensure this are detailed in the following chapter.
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4. VALIDATION OF METHODS 

Due to the results of the indoor investigation (Study 1), where some evidence of a relationship 

between greater levels of movement variability was found, it was deemed important to progress 

investigations into a more ecologically valid testing environment which would more accurately 

replicate typical competitive conditions encountered during cycling events. The potential for using 

the same equipment in field testing was therefore investigated in the next series of studies. 

4.1 STUDY TWO: Validity of PowerTap P1 pedals during laboratory-based cycling time trial 

performance 

The first of these validation studies concerned the validity of the PowerTap P1 pedals and was 

published in Sports. It can be retrieved using the weblink https://www.mdpi.com/2075-4663/6/3/92 

and has been reproduced in its entirety here for the reader’s ease. The published version is also 

presented in Appendix I. 

4.1.1 Introduction  

Laboratory based testing must be conducted upon the assumption of accurate and reliable data 

collection. To this end, a number of cycle ergometers have been validated for use within laboratory 

settings including the Wattbike (Wattbike Ltd, Nottingham, UK) which has been shown to be both 

valid and reliable across a range of testing protocols.  

For trained cyclist populations, the Wattbike has been reported to have a coefficient of variation 

(CV) of 2.6% (Hopker, Myers, Jobson, Bruce and Passfield, 2010) and to afford “highly reproducible” 

results during 30-s sprint and 4-min performance test protocols (Driller et al., 2014). In addition, the 

Wattbike demonstrates high levels of intra-day and inter-day reliability (Driller et al., 2014) and no 

significant difference between measures of power output recorded in test–retest conditions 

(Wainwright, Cooke and O’Hara, 2016). As such, the Wattbike is considered to be an accurate and 

reliable tool for training and performance assessments but there is a growing acknowledgement that 

laboratory-based research may not possess adequate levels of ecological validity (Bertucci, Grappe 

and Groslambert, 2007; Mieras, Heesh and Slivka, 2014; Prins, Terblanche and Myburgh, 2007; 

Stevens and Dascombe, 2015; Jobson et al., 2007; Palmer, Dennis, Noakes and Hawley, 1996; Smith, 

Davidson, Balmer and Bird, 2001; Coakley and Passfield, 2017).   

Researchers have reported differences of up to 8% between indoor cycling performance and an 

equivalent outdoor event (Jobson et al., 2007; Palmer, Dennis, Noakes and Hawley, 1996; Smith, 

Davidson, Balmer and Bird, 2001; Coakley and Passfield, 2017). This would suggest that, despite the 

validity of the Wattbike, laboratory protocols do not accurately replicate ‘‘real-world’’ performance 

https://www.mdpi.com/2075-4663/6/3/92
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and, as such, it has become increasingly important to be able to measure power output during 

outdoor cycling events using a range of devices designed to be fitted to the athlete’s own bicycle 

rather than relying only on laboratory-based measures.  

The Schoberer Rad Messtechnik (SRM) device, which consists of a number of rotational strain gauges 

housed between the crank spindle and chain ring interface, has become the “gold standard” device 

for such mobile power measurement applications due to its high validity and reliability (Abbiss et al., 

2009; Gardner et al., 2004; Jones and Passfield, 1998; Martin et al., 1998) and the ability to collect 

valid and reliable data during actual sporting performance while using the cyclist’s own bicycle. This 

is not to say that it is without limitations as the SRM device remains prohibitively expensive for most 

recreational-level participants and there are also potential compatibility issues due to the wide 

range of bottom bracket standards currently employed by bicycle manufacturers. In addition, the 

device itself requires a certain level of mechanical competency to install correctly and requires 

manufacturer-based servicing for battery replacements (Novak and Dascombe, 2017). These issues, 

along with the suggestion that when using this style of device there may be potential distortion of 

the crank arms, which would lead to systematic error in torque measurement (Kyle, 1990), have led 

to the development of alternative mobile power measurement devices.  

One example of this is power measuring pedals, such as Garmin Vector pedals (Garmin, 

Schaffhausen, Switzerland), which, instead of containing strain gauges in the crank arms, house 

them within each pedal body. Not only does this allow power measurement to be differentiated 

between right and left – something that was only possible with additional computation modules 

when using the SRM device – it also removes the potential influence of crank distortion. In addition, 

pedals-based devices are almost universally compatible, regardless of the individual bicycle 

componentry, which affords the potential to transfer between bicycles, with limited mechanical 

experience required for installation or maintenance.   

Garmin Vector pedals have been compared with the SRM device and have been shown to report 

non-statistically significant differences in power output (Novak and Dascombe, 2017) and to give 

reproducible results across a range of power outputs and various cycling efforts such as sub-maximal 

incremental tests, sub-maximal 30-min continuous tests and sprint tests (Bouillod, Pinot, Soto-

Romero, Bertucci and Grappe, 2017). It has been noted, however, that they increasingly 

overestimate at higher power outputs, whilst underestimating during sprints with a low gear ratio 

and during a 2-hour road cycling session on hilly terrain (Bouillod, Pinot, Soto-Romero, Bertucci and 

Grappe, 2017). This would suggest that data from Garmin Vector pedals should be treated with 

some caution.  
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One, largely unresearched, alternative to the Garmin Vector pedals is the P1 pedals system by 

PowerTap (Madison, USA). The PowerTap P1 pedals have four pairs of strain gauges per pedal to 

measure applied force at the pedal body in both the vertical and horizontal planes and Hall effect 

sensors attached to the pedal axle, which results in a claimed 40 measurement points per pedal 

stroke (PowerTap, 2018). In addition, the PowerTap P1 pedals have a temperature sensor at the 

point of force measurement. This allows for automatic accommodation for changes in temperature 

in an effort to avoid measurement error due to changes in environmental conditions during data 

collection and is something which, to the best of the author’s knowledge, is not present in any of the 

other devices mentioned here.  

Despite the popularity of power measuring pedals and the number of papers examining the validity 

of the Garmin Vector pedals, there has been little published on the validity of the PowerTap P1 

pedals with, to the authors’ knowledge, only one paper comparing PowerTap P1 pedals with the 

SRM device (Czajkowski, Bouillod, Dauriannes, Soto-Romero and Grappe, 2016). These researchers 

evaluated the pedals during both sub-maximal incremental test and sprint test protocols in a small 

(n=5) experimental cohort. Though such protocols can provide valuable insight, it has been observed 

that ‘constant work’ or ‘time trial’-type tests, where the cyclist is required to complete a set distance 

in the shortest time possible, provide more appropriate simulations of the bioenergetics of most 

competitive events lasting several minutes or more (Hopkins, Schabort and Hawley, 2001).   

The aim of this study, therefore, was to assess the validity of the PowerTap P1 pedals by comparing 

them with the previously validated Wattbike cycle ergometer during self-paced, simulated time 

trials.   

4.1.2 Methods  

Participants  

Ten trained cyclists (9 male, 1 female) (mean ± SD: 31 ± 10 yr; 1.80 ± 0.10 m; 72 ± 9 kg, Maximum 

Power Output 366 ± 69 W) volunteered to take part in the study. All cyclists held a current British 

Cycling Race Licence and maintained their normal diet and daily activity patterns throughout the test 

period. All participants gave written informed consent before taking part in the study, which had 

local ethics committee approval.  

Procedure   

Participants visited the laboratory on 3 separate occasions, separated by a minimum of 48 hours to 

allow full recovery from the previous trial. Each visit consisted of a self-directed warm up followed 
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by a simulated 10-mile (16-km) time trial and self-directed cool down. Time trials were conducted 

from a standing start and participants were given free choice of gearing and cadence throughout.  

All trials were conducted in an air-conditioned laboratory using a standard Wattbike Pro cycle 

ergometer (Wattbike Ltd, Nottingham, UK), with PowerTap P1 pedals (CycleOps, Madison, USA), 

which were zeroed before each ride, in line with manufacturer recommendations. Participants used 

their own cycling shoes and those who normally rode with cleats incompatible with the PowerTap 

pedals had their cleat position replicated with 3 bolt Kéo cleats (Look cycle international, Nevers, 

France). The ergometer was set to, as closely as possible, replicate the dimensions of each 

participant’s own bicycle.   

Data Analysis   

Power output and cadence were recorded for the duration of the time trials by a Garmin Edge 1000 

head unit (Garmin, Schaffhausen, Switzerland) and the ergometer’s display unit for the PowerTap 

pedals and Wattbike respectively. The Garmin data was then exported to third party open source 

analysis software, Golden Cheetah, and Wattbike data was analysed using Wattbike Expert software 

(Wattbike Ltd, Nottingham, UK), where it was displayed as a single value per second.  

Technical issues during some testing sessions meant that a small number of incomplete data sets 

were recorded by the Wattbike. Affected trials were removed from the study, which did not alter 

the number of participants tested but did result in only 20 of the 30 trials performed being 

analysed.  

Mean, maximum, and minimum power outputs and mean, maximum, and minimum cadences were 

calculated, checked for normality and compared between equipment using paired samples T-tests. 

Effect sizes were calculated for these tests by calculating the mean difference between the two 

measures and then dividing the result by the pooled standard deviation.   

A Bland and Altman 95% limits of agreement (LoA) analysis quantified the agreement (bias and 

random error) between measurement equipment. In accordance with recommendations for carrying 

out LoA analysis (Atkinson, and Nevill, 1998), the data was checked for heteroscedasticity via a 

Levene’s test and LoA analysis was followed by intra-class correlation coefficients (ICC) via the two-

way mixed model to quantify the consistency of the power and cadence measurements between 

PowerTap P1 pedals and Wattbike.  

All statistical testing was performed using IBM SPSS statistics version 24 (IMB Corporation, New 

York, USA), with a significance level set at p<0.05  
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4.1.3 Results  

Levene’s test revealed a lack of heteroscedasticity (p>0.05) and the results of paired samples T-tests 

showed no statistically significant differences between the PowerTap P1 pedals and the Wattbike in 

any of the measured variables: mean power output, minimum power output, maximum power 

output, mean cadence, minimum cadence or maximum cadence (p>0.05).   

For the purpose of clarity, limits of agreement (LoA) results are reported in the format: Bias ± SD 

(Upper CI, Lower CI), where the bias represents the mean difference between the measurement 

methods and the lower and upper confidence intervals were calculated as Bias ±1.96 x SD. This is 

followed by a value for intraclass correlation coefficient (ICC).  

Limits of Agreement analyses resulted in values of: 2.35 ± 18.3 W (CI −33.5 and 38.2) and an ICC of 

0.973 for mean power output (Fig. 5-1); –3.95 ± 41.8 W (CI −86.0 and 78.1) and an ICC of 0.944 for 

maximum power output (Fig. 5-2) and −18.65 ± 57.2 W (CI −130.7 and 93.4) and an ICC of 0.816 for 

minimum power output (Fig. 5-3);. Cadence analysis showed 0.25 ± 3.8 rev·min-1 (CI −7.2 and 7.7) 

and an ICC of 0.864 for mean cadence (Fig. 5-4); 1.05 ± 2.6 rev·min-1 (CI −4.1 and 6.2) and an ICC of 

0.960 for maximum cadence (Fig. 5-5); and −1.00 ± 23.9 rev·min-1 (CI −47.8 and 45.9) and an ICC of 

0.619 for minimum cadence (Fig. 5-6).  

   

Figure 4-1. Bland-Altman plot for mean power output. Dashed lines represent the high and low 
95% confidence intervals, the solid line shows the bias (the mean difference in power output 

reported between the two measurement methods). 
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Figure 4-2. Bland-Altman plot maximum power output. Dashed lines represent the high and low 

95% confidence intervals, the solid line shows the bias (the mean difference in power output 

reported between the two measurement methods). 

Figure 4-3 Bland-Altman plot for minimum power output. Dashed lines represent the high and low 

95% confidence intervals, the solid line shows the bias (the mean difference in power output 

reported between the two measurement methods). 
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Figure 4-4. Bland-Altman plot for mean cadence. Dashed lines represent the high and low 95% 

confidence intervals, the solid line shows the bias (the mean difference in cadence reported 

between the two measurement methods) 

 

Figure 4-5. Bland-Altman plot for maximum cadence. Dashed lines represent the high and low 95% 

confidence intervals, the solid line shows the bias (the mean difference in cadence reported 

between the two measurement methods) 
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Figure 4-6. Bland-Altman plot for minimum cadence. Dashed lines represent the high and low 95% 

confidence intervals, the solid line shows the bias (the mean difference in cadence reported 

between the two measurement methods) 

  

4.1.4 Discussion   

The aim of this study was to assess the validity of measurements by PowerTap P1 pedals during 

simulated time trial performances. Difference testing suggested no statistically significant 

differences between the PowerTap P1 pedals and the Wattbike ergometer for any of the recorded 

variables.   

The PowerTap P1 pedals underreported maximum power output values by 3.95 W, while 

overestimating mean power output values by 2.35 W in comparison to the previously validated 

Wattbike (Hopker, Myers, Jobson, Bruce and Passfield, 2010). This represents a −0.94% difference 

for maximum power output and 0.88% difference for mean power output, both of which are lower 

than the −1.5% difference which has previously been reported by other authors (Czajkowski, 

Bouillod, Dauriannes, Soto-Romero and Grappe, 2016). Although it is worth noting that the previous 

paper conducted both sub-maximal incremental test and sprint test protocols instead of the 

simulated time trial used here, it would still appear that there is a greater level of agreement 

between the Wattbike and PowerTap P1 pedals investigated in this paper than there was between 

the PowerTap P1 pedals and the SRM device investigated before (Czajkowski, Bouillod, Dauriannes, 

Soto-Romero and Grappe, 2016).  
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In contrast, the PowerTap P1 pedals appear to have underreported minimum power output by an 

average of 18.65 W, a 16.03% difference between the two measurement methods. Although, this 

appears to be a large difference, it is statistically non-significant and this variable is likely to be of 

little interest to cyclists in the field.   

The levels of agreement shown in this study compare favourably with previously reported values 

gathered during both submaximal incremental and continuous 30-minute testing protocols to 

compare the data produced by Garmin Vector pedals and the SRM device. During incremental tests, 

non-significant differences in mean power output between devices were found (Bouillod, Pinot, 

Soto-Romero, Bertucci and Grappe, 2017), with LoA analysis highlighting a bias of 13.7 ± 12.4 W and 

0.6 ± 6.2 W between the SRM and Stages systems and the SRM and Vector pedals, respectively. The 

30-minute continuous test more closely resembles the time trial effort evaluated in the current 

study and also produced no significant difference between the mean power outputs recorded. It was 

noted, however, that the Garmin Vector underestimated mean power output by 16.5% compared to 

the SRM. Given that a 0.88% difference for mean power output was recorded in the current study, it 

would appear that the PowerTap P1 pedals agree more closely with the Wattbike than do Garmin 

Vector pedals with the SRM.   

Further support for the validity of the PowerTap P1 pedals is provided by consideration of ICC 

results. ICC values less than 0.50, between 0.50 and 0.75, between 0.75 and 0.90, and greater than 

0.90 are suggested to be indicative of poor, moderate, good, and excellent levels of agreement 

between measures, respectively (Koo and Li, 2016). As such, it can be suggested that there are 

excellent levels of agreement between the PowerTap P1 pedals and the Wattbike for maximum 

cadence (0.960), maximum power output (0.944) and mean power output (0.973). These are 

followed by good reliability for mean cadence (0.864) and minimum power output (0.816) and 

moderate reliability for minimum cadence (0.619).  

The differences between systems seen in this study in terms of minimum power output may be the 

result of a lack of synchronisation at their point of measurement as the PowerTap P1 pedals claim 40 

measurement points per pedal stroke (PowerTap, 2018) compared to 2 measurement points by the 

Wattbike (Hopker, Myers, Jobson, Bruce and Passfield, 2010). Alternatively, the discrepancy may be 

the result of differences in how the two systems measure force. The Wattbike calculates force via 

the use of chain tension over a load cell, whereas the PowerTap P1 pedals have four pairs of strain 

gauges per pedal to measure applied force at the pedal body in both the vertical and horizontal 

planes. Regardless of the reason for this variation in measurements, these results suggest that 

caution should be employed when investigating minimum power output values using the PowerTap 



 

92 | P a g e  
 

P1 pedals although the authors would repeat that this variable is likely to be of little interest to 

cyclists or researchers using the devices in the future.   

It must be acknowledged that the sample size for the current study could be viewed as a potential 

limitation (n=10). It is worth noting, however, that mean calculated effect sizes for this study were 

0.11 for power output variables and 0.08 for cadence variables. With such small differences between 

measures, it was calculated that 896 participants would be required for power output variables and 

1693 for cadence variables before the level of difference seen here became statistically significant at 

an alpha level of p < 0.05.  

In addition, although all participants were experienced cyclists who held a British cycling race licence 

it would be fair to say that none would consider themselves to be time trial specialists. This may 

have led to issues with pacing strategy and power production during the testing protocol as it has 

previously been identified that that even competitive cyclists are not sensitive to the perceptual 

cues that inform their effort and ability to estimate how long it can be sustained (Coakley and 

Passfield, 2017). In the current study this is not a significant concern due to the concurrent nature of 

the measurements and the results discussed above would suggest that the PowerTap P1 pedals are 

a viable alternative to the SRM device for mobile power measurement applications.  

4.1.5 Conclusion 

There are no statistically significant differences between PowerTap P1 pedals and a Wattbike when 

measuring maximum, minimum, and mean power output or when measuring maximum, minimum, 

and mean cadence during a laboratory-based time trial. In addition, there are good to excellent 

levels of agreement between the PowerTap P1 pedals and Wattbike (ICC > 0.80) for all variables 

except minimum cadence. This study suggests that PowerTap P1 pedals are valid for measurement 

applications within a laboratory setting but further investigation is needed during real cycling 

locomotion in the field to assess their usage in outdoor applications. 
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4.2 STUDY THREE: Validity of skin mounted electro-goniometers as a method of calculating CRP 

during indoor TT efforts.  

Having validated the power measuring pedals (Study 2) the focus then moved to establishing a valid 

method of collecting kinematic data in a field-testing environment. 

The initial findings from this study were reported as a non-debated E-poster at the annual 

conference of the European College of Sport Science (ECSS) 2020 and then expanded to a full write 

up which has been published in Sensors and can be retrieved at https://www.mdpi.com/1424-

8220/22/12/4371/htm. It has been duplicated here for the reader’s ease and is also presented in 

Appendix II. 

4.2.1 Introduction  

Historically, cycling kinematics research has tracked joint and segment positions in an effort to 

calculate joint ranges of motion (Carpes, Bini and Quesada, 2014). These joints are then, most 

commonly, analysed in isolation (Bailey, Maillardet and Messenger, 2003; Dingwell, Joubert, 

Diefenthaeler and Trinity, 2008; Bini, Diefenthaeler and Mota, 2010; Cockroft, 2011). Although this is 

the most widely replicated approach, it has been criticised for not effectively capturing the 

complexity of coordinated motion (Bartlett, Wheat and Robbins, 2007).  

As an alternative, it has been suggested that the continuous, multi-joint nature of the cycling task 

(Hug, Drouet, Champoux, Couturier and Dorel, 2008) lends itself best to a continuous relative phase 

(CRP) method of analysis, whereby the influence of one segment’s motion upon an adjacent 

segment can be more readily acknowledged. This is achieved by calculating the joint angle at each 

joint across the entire motion cycle and then using angle-angle plots. These plots can then be 

quantified using vector coding techniques to establish the relative motion of two adjacent joints 

(Sparrow, Donovan, Van Emmerik and Barry, 1987).    

CRP values can range from 0° to 360°, where 0° shows the respective movements of the coupled 

joints perfectly in-phase, and 180° indicates that they are perfectly anti-phase. Any value between 

these indicates a relative amount of in-phase or anti-phase movement.   

Inconsistencies with this reporting convention have been identified (Lamb and Stöckl, 2014) with 

some authors choosing to report values only between 0° and 180°, given that the values −180° and 

180° both indicate anti-phase behaviour, whilst others utilise both the positive and negative values 

because they have qualitative meaning that should be preserved. For example, it has been suggested 

that preserving the negative values is important because if the phase angle of the proximal segment 

is subtracted from the phase angle of the distal segment, then positive continuous relative phase 

https://www.mdpi.com/1424-8220/22/12/4371/htm
https://www.mdpi.com/1424-8220/22/12/4371/htm
https://www.mdpi.com/1424-8220/22/12/4371/htm
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values indicate that the distal segment is ahead of the proximal segment in phase space, therefore 

providing a clearer of the coupling’s interaction (Kurz and Stergiou, 2022).   

The level of detail offered by CRP analysis allows more detailed evaluation of the interactions along 

the kinematic chain and has been suggested to be especially important where one end of the 

segmental chain is effectively fixed, in the case of cycling through its attachment to the pedal. The 

consideration of the coupling relationship between segments has been therefore suggested to be 

especially crucial in the analysis of cycling motion (Chapman, Vicenzino, Blanch and Hodges, 2009). 

Additionally, CRP analysis has been deemed to be more sensitive to changes in coordination (Davids, 

Bennett and Newell, 2006) and could offer greater insight into the changing techniques employed in 

response to learning, environmental changes such as wind speed or road surface or other 

independent variables (Burgess-Limerik, Abernathy and Neal, 1993).   

CRP has traditionally been measured using motion capture systems in a laboratory setting (Miller, 

Meardon, Derrick and Gillette, 2008; Seay, Van Emmerik and Hamill, 2011; Hein et al., 2012). This 

requires the duplication of a cyclist’s equipment using an ergometer due to the amount of distance 

covered during a cycling bout and the inability to calibrate such an extensive capture volume for 

kinematic analysis. There is, however, a readily available body of literature that focusses on the lack 

of ecological validity of such an approach. Studies have shown that there is a significant difference in 

cycling speed and power output between laboratory and road conditions during time trial events 

(Jobson et al, 2007; Jobson, Nevill, George, Jeukendrop and Passfield, 2008), whilst others have 

shown that crank torque profiles are significantly different when comparing laboratory and outdoor 

cycling conditions (Bertucci, Grappe and Groslambert, 2007). This has prompted calls to move 

towards a testing environment where riders can use their own bikes to accurately replicate ‘‘real-

world’’ performance (Carpes, Bini and Quesada, 2014), an approach which may be facilitated by the 

use of electro-goniometers during field testing.  

Electro-goniometers have long been used for the measurement of lower extremity joint motion 

(Chao, An, Askew and Morret, 1980) and their physical characteristics make them suitable for 

practical applications within biomechanics (Legnani, Zappa, Casolo, Adamini and Magnani, 2000). 

The lightweight equipment and non-invasive methods of data collection, coupled with the ability to 

record to offline data logging systems makes them a potentially excellent choice for field-based 

assessments within cycling. Indeed, they have already been assessed in terms of their suitability for 

use in professional bike fitting services (Fonda, Sarabon, and Li, 2014) and have been found to be 

more accurate and valid for use within laboratory studies than manual methods of measuring knee 

joint range of motion (Shamsi, Mirzaei and Khabiri, 2019).   
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The aim of this study, therefore, was to investigate whether electro-goniometers offer a valid 

method for the calculation of CRP values during cycling performance. If this is the case, 

investigations into cycling technique can move to a more ecologically valid setting, whilst considering 

the interconnected nature of joint movements which occur during the movement.  

4.2.2 Method  

Participants  

Seven participants (4 male, 3 female, age: 29 ± 7yrs, height: 1.76 ± 0.10m, mass: 71.97 ± 11.57kg) 

volunteered to take part in the study. Participants were recreationally active and free from injury at 

the time of testing but were not trained cyclists. All participants gave written informed consent 

before taking part in this study, which had local ethics committee approval in accordance with the 

rules of the Declaration of Helsinki of 1975, revised in 2013.   

Procedure   

Participants were invited to adjust the cycle ergometer (Wattbike Pro cycle ergometer, Wattbike, 

UK) to their comfort. This configuration was maintained throughout the testing session. Reflective 

markers (Qualisys, Sweden) were attached to the participant’s right leg at the greater trochanter, 

lateral femoral condyle and lateral malleolus. A marker was also attached to the lateral side of the 

participant’s shoe, with placement determined by palpation to establish the positioning of the base 

of the 5th metatarsal. Bi-axial electro-goniometers (Biometrics, UK) were attached at the hip, knee 

and ankle. The electro-goniometer at the hip was aligned vertically with the strain gauge running 

immediately posterior to the greater trochanter marker and the terminals positioned equidistant 

superior and inferior to the marker. The electro-goniometer at the knee was positioned on the 

medial aspect of the knee, aligned vertically with the strain gauge running directly over the medial 

femoral condyle and the terminals equidistant superior and inferior to this landmark. The electro-

goniometer at the ankle was attached so that the superior terminal was aligned vertically above the 

medial malleolus, the strain gauge ran over the medial malleolus and the inferior terminal was 

positioned horizontally on the participant’s shoe so that the electro-goniometer recorded an angle 

of 90o with the participant standing in the anatomical reference position. Goniometers were 

“zeroed” before application and applied to achieve values as close to 0o, 0o and 90o respectively.  

Participants performed exercise bouts of 30s at four prescribed cadences (60, 80, 100, 120 rev·min-1) 

on the stationary ergometer (Wattbike, UK), with freely chosen resistance. Participants were given 

free choice of riding posture but asked to maintain the same position across all conditions.  

Data Analysis   
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Measures were synchronously recorded by the bi-axial electro-goniometers (Biometrics, UK) and a 

12-camera motion capture system (Qualisys, Sweden), with both systems recording at 500Hz. Raw 

marker trajectories were used to calculate sagittal plane joint angle and joint angular velocity which 

were recorded at the hip, knee and ankle and analysed for 10 complete pedal revolutions per 

participant per condition. Data was interpolated to 100 time points and used to calculate mean 

Continuous Relative Phase (CRP) per pedal revolution at two intra-limb couplings: (i) knee 

flexion/extension–ankle plantarflexion/dorsiflexion (KA) and (ii) hip flexion/extension–knee 

flexion/extension (HK).   

Following checks for normal distribution, a combination of repeated measures T-tests and Wilcoxon 

signed rank tests were used to check for significant differences between measurement systems, 

followed by intra-class correlation coefficients (ICC) via the two-way mixed model to quantify the 

consistency of the CRP values produced by the two systems.  

All statistical testing was performed using IBM SPSS statistics (IMB Corporation, USA), with an alpha 

level set at p<0.05.  

4.2.3 Results  

When comparing the mean CRP values produced by the two systems (Table 6-1), there were 

statistically significant differences (p<0.05) at 80 and 100 rev·min-1 for the Hip-Knee coupling and at 

120 rev·min-1 for the Knee-Ankle coupling.   

 The goniometers appeared to report consistently higher mean values at the Hip-Knee coupling 

across all cadences. This is also true for 80, 100 and 120 rev·min-1 for the Knee-Ankle coupling with 

the goniometers apparently underreporting at 60 rev·min-1, compared to the previously validated 

camera system (Table 6-1). 

 

 

  

Table 4-1. Comparisons between Mean Continuous Relative Phase values produced across a 

complete pedal revolution. 

Coupling  
Cadence 

(rev·min-1)  

Mean CRP Value (Mean ±SD)  Sig.  ICC 
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    Camera System  Goniometers      

Hip-Knee  60  3.57 (±1.94)  5.55 (±1.05)  0.080  -0.413  

Hip-Knee  80  3.33 (±2.36)  6.81 (±1.84)  0.043*  -0.272  

Hip-Knee  100  2.48 (±1.76)  7.19 (±1.73)  0.028*  -0.103  

Hip-Knee  120  7.81 (±6.57)  13.59 (±5.23)  0.191  -0.418  

Knee-Ankle  60  11.43 (±4.83)  8.71 (±3.36)  0.066  0.749  

Knee-Ankle  80  12.31 (±6.13)  13.17 (±6.67)  0.691  0.664  

Knee-Ankle  100  12.26 (±6.70)  18.95 (±13.11)  0.176  0.346  

Knee-Ankle  120  11.29 (±5.10)  29.22 (±16.25)  0.009*  0.376  

* Denotes a significant difference between systems at p<0.05.  

Intra-class correlation coefficients were created via the two-way mixed model to quantify the 

consistency of the CRP values produced by the two systems (see Table 6-1). The majority of these 

coefficients were below 0.5, suggesting poor levels of reliability between systems. The only 

exceptions to this were seen at 80 and 100 rev·min-1 at the Knee-Ankle coupling, where values of 

0.749 and 0.664 respectively were recorded. This would suggest, at best, a moderate level of 

agreement between systems and predicated further investigation into the basic joint position data 

produced by each system to ascertain the reason for such discrepancies.   

Comparing positional data between systems revealed significant differences (p<0.05) at all cadences 

when comparing mean maximum hip angle and mean minimum hip angle (Table 6-2). The only 

exception to this was at 80 rev·min-1 (p=0.197) where there was no statistically significant difference 

between the two systems; however, the large standard deviation value (±18.95) in the goniometer 

dataset does offer some cause for concern.  

  

 

Table 4-2. Comparison of Mean Maximum and Mean Minimum hip angle recorded across 10 pedal 

revolutions. 
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Cadence 

(rev·min-1)  

60  80  100  120  

Measurement 

System  

Camera Goniometer Camera Goniometer Camera Goniometer Camera Goniometer 

Maximum Hip 

angle (°)  

73.25 

(±2.10)  

84.08 

(±13.70)  

73.56 

(±2.00)  

82.22 

(±17.30)  

73.37 

(±2.42)  

82.88 

(±15.85)  

71.80 

(±2.75)  

83.52 

(±16.89)  

Sig.  <0.001*  <0.001*  <0.001*  <0.001*  

Minimum Hip 

angle (°)  

33.49 

(±5.21)  

40.79 

(±17.71)  

33.87 

(±5.65)  

36.30 

(±18.95)  

33.21 

(±5.60)  

37.11 

(±19.25)  

31.02 

(±5.92)  

39.24 

(±17.70)  

Sig.  0.010*  0.197  0.044*  <0.001*  

  

* Denotes a significant difference between systems at p<0.05.  

When comparing the mean maximum knee angle, there was further evidence that the two systems 

did not agree, with statistically significant differences (p<0.05) being seen at all cadences (see Table 

6-3). This is also the case when comparing the mean minimum knee angle (see Table 6-3). Again, 

statistically significant differences (p<0.05) were recorded at all cadences. 
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Table 4-3. Comparison of Mean Maximum and Mean Minimum knee angle recorded across 10 

pedal revolutions. 

Cadence 

(rev·min-1)  

60  80  100  120  

Measurement 

System  

Camera  Goniometer  Camera  Goniometer  Camera  Goniometer  Camera  Goniometer  

Maximum 

Knee angle (°)  

138.75 

(±8.66)  

165.24 

(±6.36)  

138.52 

(±9.39)  

166.99 

(±6.07)  

138.61 

(±8.87)  

170.04 

(±5.36)  

140.26 

(±9.74)  

173.62 

(±8.19)  

Sig.  <0.001*  <0.001*  <0.001*  <0.001*  

Minimum Knee 

angle (°)  

70.75 

(±4.17)  

113.25 

(±13.35)  

70.42 

(±4.44)  

116.62 

(±14.08)  

69.81 

(±4.40)  

117.41 

(±13.29)  

70.17 

(±4.92)  

121.00 

(±15.70)  

Sig.  <0.001*  <0.001*  <0.001*  <0.001*  

  

* Denotes a significant difference between systems at p<0.05.  

  

Levels of reported ankle flexion/extension were also statistically significantly different (p<0.05) 

between the two measurement systems at all cadences with regards to both maximum and 

minimum mean reported values (see Table 6-4).   

 In summary, positional data suggested that the goniometer systems consistently over-reported both 

maximum and minimum values for hip and knee flexion/extension, while simultaneously under-

reporting the corresponding values at the ankle. 
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Table 4-4. Comparison of Mean Maximum and Mean Minimum ankle angle recorded across 10 

pedal revolutions. 

Cadence 

(rev·min-1)  

60  80  100  120  

Measurement 

System  

Camera  Goniometer  Camera  Goniometer  Camera  Goniometer  Camera  Goniometer  

Maximum 

Ankle angle (°)  

 120.65 

(±11.98)  

102.31 

(±9.61)  

 117.97 

(±5.67)  

102.18 

(±8.70)  

118.11 

(±6.15)  

104.41 

(±13.20)  

119.68 

(±5.31)  

114.49 

(±48.72)  

Sig.  <0.001*  <0.001*  <0.001*  <0.001*  

Minimum 

Ankle angle (°)  

100.90 

(±13.35)  

83.59 

(±7.17)  

95.39 

(±7.38)  

83.23 

(±7.17)  

94.91 

(±6.92)  

83.23 

(±6.80)  

94.80 

(±5.26)  

79.22 

(±12.10)  

Sig.  <0.001*  <0.001*  <0.001*  <0.001*  

  

* Denotes a significant difference between systems at p<0.05.  

4.2.4 Discussion  

Results from this investigation suggest that bi-axial electro-goniometers are not a valid method for 

recording CRP values during simulated cycling efforts. There were statistically significant differences 

(p<0.05) between measurement systems in two of four tested cadences for the Hip-Knee coupling 

and a further significant difference was reported at 120 rev·min-1 for the Knee-Ankle coupling. The 

lack of agreement between systems is further supported by ICC values, which mostly fall below 0.5, 

showing poor levels of agreement between systems (Koo and Li, 2016) when calculating CRP.   

 The discrepancy between systems could be due to the fact that signal values were not normalised. 

There has been some debate as to whether or not normalisation would avoid the magnitude of 

values from one segment dominating the CRP pattern (Lamb and Stöckl, 2014). However, multiple 

studies (Lamb and Stöckl, 2014; Kurz and Stergiou, 2002) concluded that, in the case of joint 

kinematics, normalisation is not required because the finite values are unimportant, it is the relative 

phase that is of interest. Calculation of CRP, therefore, appears to require normalisation of values 

against time, as done here, but not normalisation of the original signal values themselves.   



 

101 | P a g e  
 

As shown above, further investigation into the reason for the lack of agreement revealed statistically 

significant differences (p<0.05) between systems at the fundamental level of measured angular 

position. The two systems only agreed in terms of the minimum angle recorded at one joint (the 

hip), in one condition (80 rev·min-1). All other comparisons returned significantly different results. 

Discrepancies at this level make it almost inevitable that there will be differences between reported 

CRP values, based, as they are, on differing fundamental measures.   

The reason for such discrepancies in basic measures of angular position could, in part, be attributed 

to poor experimental control in terms of goniometer placement. Although every effort was made to 

replicate the exact placement described in the Methods section above, the lack of anatomical 

landmarks to use for reference means it is possible that there was some variation in placement 

between participants.   

 Even if placement was perfectly replicated between participants, it has been suggested that the 

human body lacks even surfaces and right angles on which to attach sensors of this nature in order 

to accurately calculate joint angles (Seel, Raisch and Schauer, 2014). The suggestion being that the 

lack of flat surfaces means the orientation of a measurement device cannot possibly be aligned with 

any physiologically meaningful axis. This is especially apparent at the knee where, despite 

traditionally being described as a single planar hinge joint, there are degrees of freedom relating to 

flexion/extension, abduction/adduction and internal/external rotation (Favre, Jolles, Aissaoui and 

Aminian, 2008). Although abduction/adduction and internal/external rotation angles very rarely 

exceed a range of ±10° (Perry and Davids, 1992), it is possible that this is enough to affect the 

measurement of angular position when using a system such as the electro-goniometers used here, 

which assume entirely planar motion.   

Related concerns with the placement of the electro-goniometers include the influence of soft-tissue 

movement artifacts, the suggestion that surface mounted markers may not adequately represent 

true anatomical locations and the assumption that markers attached to the skin surface are rigidly 

connected to the underlying bones (Ramesay and Wretenberg, 1999; Stagni, Fantozzi, Cappello, and 

Leardini, 2005). It has been reported that skin marker trajectories showed up to 31mm error, when 

compared to a prosthesis-embedded anatomical frame, and up to a 192% root mean square error in 

abduction/adduction estimations taken from markers placed on the thigh and shank. Although the 

reflective markers used in this investigation were placed on bony anatomical landmarks (greater 

trochanter, lateral femoral condyle and lateral malleolus) to remove the influence of such artifacts, it 

should be noted that it is not possible to mount the electro-goniometers in such a way. The electro-

goniometers, therefore, may have been subject to the type of soft tissue movement artifacts 
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described above and this could contribute to the lack of agreement between systems in terms of 

fundamental angular position and CRP.   

A potential limitation of the current study relates to the way in which the measures were produced. 

Although care was taken to match the sampling frequencies of the systems at 500Hz and the same 

10 revolutions were analysed per participant per condition, the systems themselves were not 

synchronised. It is possible that this may have contributed to the differences seen between systems, 

but it is worth noting that, even at the highest cadence (120 rev·min-1), the chosen sampling rate still 

provides approximately 250 measures per pedal revolution.    

In the current investigation, CRP was reported as a mean value for an entire pedal revolution. The 

poor agreement between systems shown at this level meant that it was deemed more worthwhile to 

investigate the root of the discrepancies between systems rather than delve further into the 

divisions of a pedal revolution, but this is something which would be recommended once a valid 

measurement system has been established. Reporting a single CRP value, averaged across a 

complete pedal revolution may not offer enough detail throughout the various phases of the 

revolution to fully exhibit the nuanced kinematics at play. Therefore, it is suggested that future 

studies should split the pedal revolution into separate power and recovery phases. This approach 

has been adopted previously (Sides and Wilson, 2012) and has, at times, been extended to an even 

more detailed analysis of four “quarters” across the pedal revolution (Dorel, Couturier and Hug, 

2009; Dorel et al., 2009; Lanferdini, Jaques, Bini and Vaz, 2014). The purpose of such a split would be 

to effectively separate the power and recovery phases from the areas at the top and bottom of the 

pedal revolution, which have long been identified as areas where pedalling kinematics are altered 

due to tangential force being at a minimum (Ericson, Nisell and Nemetth, 1988; Patterson and 

Moreno, 1990).   

4.2.5 Conclusion  

Although it has been suggested that the use of CRP analysis provides information that cannot be 

obtained through conventional angular position vs. time presentation, the results from this study 

would suggest that bi-axial electro-goniometers are not a suitable method for recording such 

values. Further investigations are recommended to establish a valid alternative to traditional motion 

capture systems so that investigations into joint-couple motions during cycling may move to a more 

ecologically valid setting that accurately replicates the “real world” performances of athletes.
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4.3 STUDY FOUR: Validity of Inertial Measurement Suit 

4.3.1 Introduction 

Given the findings of Study 3, which strongly suggested that electro-goniometers were not suitable 

for calculating CRP at the Hip-Knee and Knee-Ankle joint couplings during cycling, it was evident that 

an alternative method of collecting valid kinematic data at the hip, knee and ankle was needed. This 

would hopefully allow the investigation to move outdoors, into a more ecologically valid scenario, to 

investigate intra-individual movement variability in a “real world” setting without relying on the 

“gold standard” data collection of a camera-based motion capture system.  

One potential alternative method was found in the form of a device which was developed and 

manufactured by a local research and development company who preferred not to be named in this 

thesis due to the relatively early stages of the business. Their device was a base-layer style garment 

which was designed to be worn underneath the athlete’s normal clothing to allow for non-invasive 

monitoring of golf swing movements during practice and competition events. Data capture was 

achieved via 18 Inertial Measurement Units (IMUs) which are embedded within the garment and 

record positional data at a rate of 1000Hz. The company had already undertaken significant in-house 

validation against motion capture systems using a range of golfing athletes at varying levels of 

expertise. Although, to the best of the author’s knowledge, none of this work had been published, 

the company were confident that the suit was capable of accurately measuring 90,000 pieces of data 

per second and had developed their own interactive map which featured a 3D avatar to allow for 

real time feedback of measured variables.   

If this wearable garment were to prove a valid way of capturing kinematic data in a field-testing 

environment the benefits would be huge for both the athlete and coach but also for the 

biomechanist. Firstly, the suit had been specifically designed to measure human movement outside 

of the laboratory setting, meaning that it would not require the re-purposing of laboratory-based 

equipment and would allow cyclists of all skill levels to monitor their movement regardless of the 

setting in which training or performance was to take place. 

Secondly, the lightweight equipment and non-invasive IMUs, coupled with the fact that it would 

allow cyclists to continue wearing their own preferred cycling clothing over the top, made this a 

potentially excellent choice for field-based assessments within cycling. There is a significant body of 

literature which investigates the validity of such devices (e.g. Van den Noort, Scholtes and Harlaar, 

2009; Eckardt, Munz and Witte, 2014; Geissinger and Asbeck, 2020; De Baets et al., 2020) and IMUs 
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have been shown to provides accurate measures of accelerations and orientations during multiple 

functional activities (Cudejko, Button and Al-Amri, 2022). 

In addition, the immediacy with which the IMU garment provides data would mean a huge reduction 

in the analysis and processing time required for a biomechanist to obtain specific kinematic 

variables. The automatic reporting functions, coupled with the manufacturer’s cloud-based data 

sharing platform, would also allow a cyclist to use the system for in-person training with their coach 

or transmit their data directly to a coach anywhere in the world to provide real-time feedback.  

Given the raft of potential benefits described above, the IMU suit appeared to be an ideal solution to 

provide kinematic measures of cycling in a field-based setting. The suit had already been highly 

tested for golf swings but no investigations on its validity when measuring cycling movements had 

been conducted. The aim of this investigation was therefore to fully replicate the methods of Study 3 

in order to validate the IMU suit for use in cycling applications.  

Although it was originally intended that this would be a full validation study, initial findings made it 

clear that the suit was not going to be a suitable option (see Section 7.3) so only pilot testing results 

will be discussed here. 

4.3.2 Pilot testing method 

For the pilot testing a single participant was required to wear the IMU motion capture suit and then 

have reflective markers (Qualisys, Gothenburg, Sweden) attached to the Greater Trochanter, Lateral 

epicondyle of the femur, Lateral malleolus and 5th metatarsal on the dominant (left) side of the 

participant’s body. All markers were placed on the suit and attached using double sided tape then 

secured using Kinesio tape. The participant then performed 4 cycling bouts of 30 seconds each at 60, 

80, 100 and 120 rev·min-1 on a Wattbike pro ergometer (Wattbike, Nottingham, UK). Cycling bouts 

were synchronously recorded by both the suit and the camera system (Qualisys, Gothenburg, 

Sweden). 

Due to the commercially sensitive nature of the processing algorithms employed by the suit, the 

data from the suit was processed by the manufacturer and returned in the form of Microsoft Excel 

sheets displaying sagittal plane knee and hip angles.  

4.3.3 Pilot testing results 

At lower cadences (60 and 80 rev·min-1) the initial values reported by the suit seemed generally 

promising in that the range of motion and peak angles seemed believable. Representative data is 

displayed in Figures 7-1 and 7-2. 
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Figure 4-8. Left hip joint angle at 60 rev.min-1. 

 

 

 

Figure 4-9. Left knee joint angle at 60 rev.min-1 

 

However, once the higher cadences were reached (100 and 120 rev·min-1) it became apparent that 

the data from the suit was subject to a significant amount of drift. This resulted in the reporting of 

anatomically impossible hip angles as seen in the example Figures 7-3 and 7-4. 
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Figure 4-10. Left hip joint angle at 80 rev.min-1. 

 

 

Figure 4-11. Left hip joint angle at 120 rev.min-1. 

 

4.3.4 Pilot testing discussion 

Upon seeing the initial results, it was agreed that no further analysis would be conducted, and the 

manufacturer of the suit was approached for an explanation of the drift. They offered a number of 

potential reasons.  
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Firstly, they suggested that the magnetic field produced by the Wattbike could be interfering with 

the IMUs ability to measure accurately. This would seem reasonable as one component of all IMUs is 

reliant on magnetic field measures. However, the manufacturer’s representative at the testing 

session checked the magnetic field around the ergometer before testing commenced and was 

satisfied that it fell within the workable boundaries for their device. In addition, the Wattbike 

calculates force via the use of chain tension over a load cell so it is unclear where this alleged 

magnetic interference may have originated from. 

Secondly, the manufacturer suggested that the drift may have been due to the time elapsed 

between calibration events. This, again, makes sense as the suit is designed to record individual golf 

swings which are, by their nature, very short duration. However, the manufacturer also suggested 

that the suit only needed calibration at the start of each testing session. Regardless, the suit 

reported a peak hip angle which drifted by approximately 45o (56.31o – 11.30o) and also shifted the 

reported minimum hip angle from a positive to a negative value within a single 30 second recording 

of cycling movements. This alone clearly makes it unsuitable for recording an outdoor time trial 

effort which is expected to be in the order of 30 minutes of duration. 

The manufacturer’s final suggestion was that, due to the processing algorithms which had been 

programmed into the suit’s bespoke software, it was unable to mathematically cope with the thigh 

segment moving beyond the global horizontal plane. This is a movement which is completely absent 

from the performance of a golf swing for which the suit had been validated and therefore, 

apparently, caused a mathematical argument that the software was unable to solve when 

processing 3D kinematic values. Having not been given access to any of the data processing it is not 

possible to comment on the validity of these claims. 

Due to the timing of this investigation coinciding fairly closely with the suit’s commercial launch and 

a perceived lack of interest in expanding beyond golf at the time, the manufacturer was unwilling to 

put any time, effort or resources into resolving any of the issues described here and the partnership 

came to an end at this point. 

4.3.5 Pilot testing conclusion 

It was clear from the level of drift apparent in the data recorded using the suit, and the resultant 

reporting of anatomically impossible values for hip angle, that it was not going to provide a suitable 

option for recording joint kinematics during outdoor cycling time trial efforts and it was abandoned 

at this time in favour of other IMU based solutions (see Study 5). 
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4.4 STUDY FIVE: Validity of Xsens Dot Inertial Measurement Units.4.4.1 Introduction 

Having established that the methods investigated in Studies 3 and 4 would not be suitable for the 

determination of CRP, the decision was taken to test the validity of an alternative IMU system for 

use in cycling data capture. Such a system has been developed by Xsens Technologies B.V. 

(Enschede, Netherlands) which was founded in 2000 and is viewed as “the leading innovator in 3D 

motion tracking technology and products” (Rana and Mittal, 2020). Although initially developed for 

mo-cap/animation applications within the film and gaming industries, Xsens products quickly 

became adopted by sports science practitioners who required a portable system in order to research 

human motion beyond the constraints of the traditional lab environment (Mavor et al., 2020). This 

has led to a significant body of literature which investigates the validity of such devices with 

numerous studies available which have done this in a variety of human motion settings (e.g. Van den 

Noort, Scholtes and Harlaar, 2009; Eckardt, Munz and Witte, 2014; Geissinger and Asbeck, 2020; De 

Baets et al., 2020). Although the body of work presented gives confidence in the company’s ability to 

produce valid and reliable Inertial Measurement Unit (IMU) based motion capture systems, it should 

be noted that the collected literature largely relates to the company’s flagship “Awinda” system and 

none of it focusses directly on human movement during cycling. 

In 2020, Xsens released a new product under the name of Xsens DOT which was designed to be a 

more affordable IMU system costing ~£500 and featuring just 5 units compared to Xsens’ flagship 

MTw Awinda full body system which requires 17 sensors and costs in the region of £3000. It was also 

designed to promote community development of custom applications with a “simple-to-use 

Software-Development-Kit (SDK) and comprehensive documentation”. 

Naturally, the scientific community immediately produced a number of studies to assess the validity 

of the new system with conclusions that it provides accurate measures of accelerations and 

orientations during multiple functional activities (Cudejko, Button and Al-Amri, 2022). It was also 

shown that the Xsens Dots were suitable for rehabilitation applications and sports to detect 

malposition (Schlage, Kitzig, Stockmanss and Naroska, 2021), have great potential to improve limb 

exercises monitoring and RoM measurement in home-based physical therapy. Another cited benefit 

was also that the system was cost effective and can be made available widely for immediate 

application (Wei, Kurita, Kuang and Gao, 2021).  

Despite the overwhelmingly positive evidence above, there is a notable absence of validation studies 

in sporting applications and, more specifically, none have been found in cycling at this time. This 

may, in part, be due to the short period of time that Xsens Dots have been commercially available 

and, therefore, the aim of this study was to continue on from the previous two investigations of this 
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thesis (Studies 3 and 4) in an effort to provide a valid method for measuring joint angles and 

calculating continuous relative phase during field-based cycling activities. 

If Xsens Dots are proven to be a valid method for such measurements, then this would be 

advantageous for a number of reasons. Firstly, it would provide an affordable alternative to the full-

body, suit-based, products that were investigated earlier in this thesis (see Study 4). Second, the lack 

of a suit allows more flexibility to attach sensors in anatomically relevant positions allowing for 

variation in participant anthropometry. Third, the lack of suit would allow cyclists to perform field 

testing while wearing their preferred clothing and equipment, contributing to higher overall 

ecological validity. Finally, the ability to tailor the specific calculations for each application make for a 

more efficient use of researchers’ time. Rather than being restricted to the pre-determined variables 

produced as standard from a manufacturer’s app, researchers could produce only variables which 

are relevant to the task of interest.  

4.4.2 Method 

Participant information 

For this validation, the decision was taken to replicate the methods adopted in Studies 3 and 4. To 

this end, 8 participants (5 male, 3 female, mean ± SD: 32 ± 8 yr; 1.85 ± 0.27 m; 68 ± 14 kg) who were 

recreationally active but were not trained cyclists were recruited to take part in the study. All 

participants were free from injury at the time of testing and provided written informed consent 

before taking part in this study. 

Testing procedure and instrumentation 

Participants were invited to adjust the cycle ergometer (Wattbike Pro cycle ergometer, Wattbike, 

UK) to their comfort. This configuration was maintained throughout the testing session. Reflective 

markers (Qualisys, Sweden) were attached to the participant’s right leg at the greater trochanter, 

lateral femoral condyle and lateral malleolus. A marker was also attached to the lateral side of the 

participant’s shoe, with placement determined by palpation to establish the positioning of the base 

of the 5th metatarsal.  

In addition, inertial measurement units (Xsens Dot, Xsens technologies, Netherlands) were attached 

at the midpoint of the thigh and shank segments and on the superior aspect of the foot. The thigh 

sensor was placed on the lateral aspect, mid-way along the line between the greater trochanter and 

lateral femoral condyle markers oriented so that the x axis of the sensor’s local co-ordinate system 

ran along the longitudinal axis of the segment. Similarly, the shank sensor was also placed on the 

lateral aspect, mid-way along the line between the lateral femoral condyle marker and lateral 
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malleolus markers, again oriented so that the x axis of the sensor ran along the longitudinal axis of 

the segment. The foot sensor was attached to the superior aspect of the participant’s shoe, as close 

to the border between intermediate and lateral cuneiforms as was possible to determine via 

palpation. The sensor was oriented such that the x axis of the sensor ran along the longitudinal axis 

of the foot and was as horizontal as possible given the underlying structure and footwear.  

Participants performed exercise bouts of 30 s at four prescribed cadences (60, 80, 100, 120 

rev·min−1) on the stationary ergometer (Wattbike, UK), with freely chosen resistance. Participants 

were given free choice of riding posture but asked to maintain the same position across all 

conditions. 

Position and orientation data was synchronously recorded by the IMUs and a 12-camera motion-

capture system (Qualisys, Sweden), with both systems reporting at 120 Hz.  

Data analysis 

Raw marker trajectories were used to calculate sagittal plane joint angle and joint angular velocity, 

which were recorded at the hip, knee and ankle and analysed for 10 complete pedal revolutions per 

participant per condition. The same variables were calculated from the IMUs by exporting Euler 

angle outputs and converting them to joint angles using a custom-built Excel spreadsheet (Microsoft 

Excel, Microsoft corporation, Washington, USA).  

Both data sets were interpolated to 100 time points and used to calculate mean continuous relative 

phase (CRP) per pedal revolution at two intra-limb couplings: (i) knee flexion/extension–ankle 

plantarflexion/dorsiflexion (KA) and (ii) hip flexion/extension–knee flexion/extension (HK). 

This process was repeated with each pedal revolution being split into a crude “power” and 

“recovery” phases (0-180o and 180-360o respectively) in a similar manner to Sides and Wilson (2012) 

and this was further extended to subsequently divide each revolution into four phases as performed 

Dorel, Couturier and Hug (2009) to produce separate top, drive, bottom and recovery phases (see 

figure 8-2). 
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Figure 4-12. Showing the four phases per pedal revolution.  

Adapted from Dorel, Couturier and Hug (2009) 

All analyses were initially run including all 40 revolutions per participant (n=320 total comparisons) 

before being split according to cadence (60, 80, 100 and 120 rev·min−1) and analysed again (n=80 

comparisons per cadence). 

IBM SPSS statistics (IMB Corporation, Armonk, NY, USA) was used to calculate intra-class correlation 

coefficients (ICC) via the two-way mixed model to quantify the consistency of the CRP values 

produced by the two systems for full revolution, simple half and half splits and four phase values. 

4.4.3 Results 

Intra-class coefficient values are displayed in Tables 8-1 and 8-2, overleaf. All correlations considered 

either good or excellent have been denoted in the following tables using an asterisk.  

Using the guidelines from Koo and Li (2016), this requires ICC results to be between 0.75 and 0.90 to 

be denoted as “good” and >0.9 to be considered as “excellent”. Conversely, ICC results of <0.5 

indicate poor levels of agreement and results between 0.5 and 0.75 suggest only moderate levels of 

agreement between systems.   

Top 

Drive Recovery 

Bottom 
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Table 4.4. Levels of agreement between the Camera system and IMUs at the Hip-Knee coupling. 

Data set Analysis  ICC Lower 95% CI Upper 95% CI 

Combined  Full revolution  0.902* 0.794 0.953 

Two phases Power phase 0.730* 0.73 0.953 

Recovery phase 0.602 0.602 0.911 

Four phases Top phase 0.770* 0.77 0.948 

Drive phase 0.838* 0.566 0.931 

Bottom phase 0.780* 0.535 0.896 

Recovery phase 0.711 0.388 0.863 

60 rev·min-1 Full revolution  0.902* 0.384 0.994 

 Two phases Power phase 0.891* 0.424 0.993 

  Recovery phase 0.823* 0.355 0.993 

 Four phases Top phase 0.965* -1.024 0.984 

  Drive phase 0.847* 0.876 0.998 

  Bottom phase 0.890* -0.324 0.988 

  Recovery phase 0.730 0.234 0.992 

80 rev·min-1  Full revolution  0.928* 0.447 0.992 

 Two phases Power phase 0.813* -0.442 0.980 

  Recovery phase 0.990* 0.910 0.999 

 Four phases Top phase 0.641 -2.494 0.963 

  Drive phase 0.737 -0.503 0.971 

  Bottom phase 0.908* 0.082 0.990 

  Recovery phase 0.981* 0.853 0.998 

100 rev·min-1 Full revolution  0.899* 0.121 0.989 

 Two phases Power phase 0.823* -0.251 0.981 

  Recovery phase 0.892* -0.332 0.989 

 Four phases Top phase 0.754* -0.500 0.973 

  Drive phase 0.682 -1.026 0.965 

  Bottom phase 0.851* 0.003 0.984 

  Recovery phase 0.764* -2.853 0.976 

120 rev·min-1  Full revolution  0.856* -6.96 0.961 

Two phases Power phase 0.548 -1.594 0.957 

Recovery phase 0.460 -1.491 0.937 

Four phases Top phase 0.656 -1.983 0.964 

Drive phase 0.695 -4.381 0.97 

Bottom phase 0.061 -1.987 0.903 

Recovery phase 0.565 -0.446 0.944 
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Table 4.44-6. Levels of agreement between the Camera system and IMUs at the Knee-Ankle 

coupling. 

Data set Analysis  ICC Lower 95% CI Upper 95% CI 

Combined  Full revolution  0.765* 0.364 0.902 

Two phases Power phase 0.780* 0.516 0.899 

Recovery phase 0.523 0.018 0.772 

Four phases Top phase 0.815* 0.608 0.913 

Drive phase 0.656 0.201 0.847 

Bottom phase 0.417 -0.224 0.727 

Recovery phase 0.455 -0.108 0.742 

60 rev·min-1  Full revolution  0.837* 0.186 0.971 

 Two phases Power phase 0.809* 0.090 0.966 

  Recovery phase 0.787* -0.371 0.964 

 Four phases Top phase 0.699 -0.430 0.946 

  Drive phase 0.719 -0.273 0.950 

  Bottom phase 0.323 -1.938 0.877 

  Recovery phase 0.605 -0.596 0.927 

80 rev·min-1  Full revolution  0.826* -0.209 0.973 

 Two phases Power phase 0.693 -0.273 0.943 

  Recovery phase 0.749 -0.223 0.956 

 Four phases Top phase 0.901* 0.492 0.983 

  Drive phase 0.785* -0.765 0.977 

  Bottom phase 0.667 -0.535 0.940 

  Recovery phase 0.649 -0.330 0.934 

100 rev·min-1 Full revolution  0.712 -0.467 0.958 

 Two phases Power phase 0.843* 0.214 0.972 

  Recovery phase 0.682 -0.407 0.951 

 Four phases Top phase 0.958* 0.749 0.993 

  Drive phase 0.871* 0.222 0.978 

  Bottom phase 0.873* -0.113 0.987 

  Recovery phase 0.528 -0.561 0.921 

120 rev·min-1  Full revolution  0.807* -0.053 0.957 

Two phases Power phase 0.782* -0.398 0.963 

Recovery phase 0.739 -0.191 0.953 

Four phases Top phase 0.661 -0.682 0.940 

Drive phase 0.700 -0.966 0.950 

Bottom phase 0.711 -0.414 0.949 
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Recovery phase 0.643 -0.346 0.930 

4.4.4 Discussion 

The aim of this study was to investigate the validity of calculating continuous relative phase via 

measurements taken by skin mounted IMUs compared with the “gold standard” motion capture 

camera system. As shown in the tables above, levels of agreement are generally either good or 

excellent for both the Hip-Knee and Knee-Ankle couplings, with some lesser levels displayed at 

specific cadences, which will be discussed below. 

Hip-Knee Coupling 

As shown in Table 8-1, the Hip-Knee coupling shows excellent levels of agreement between systems 

(ICC >0.9) when looking across a full revolution at all cadences except 120 rev·min−1. At 120 rev·min−1 

an ICC value of 0.856 still shows good levels of agreement between systems and suggests that 

measures from the IMU system may still be trusted at this cadence. 

This trend towards lower levels of agreement at the highest cadence is also present when the 

revolution is further divided for either two-phase or four-phase analysis. During two-phase analysis 

both the power phase and recovery phase shows good levels of agreement (ICC 0.75-0.90) at 60 

rev·min−1, excellent agreement (ICC >0.9) at 80 and 100 rev·min−1 but only moderate (ICC 0.5-0.75) 

levels of agreement at 120 rev·min−1. During four-phase analysis there are either good or excellent 

levels of agreement in all phases of the revolution at all cadences with the exception of the recovery 

phase at 60 rev·min−1 and bottom and recovery phases at 120 rev·min−1 which showed moderate 

levels of agreement. 

Although this would suggest that results from the IMUs may need to be treated with some caution 

when the participant is working at higher cadences, it is worth noting that 120 rev·min−1 is likely to 

be above the cadence that cyclist would choose for a time trial event. Abbiss, Peiffer and Lauresen 

(2009) reported that cadences of between 100 and 120 rev·min−1 are best suited to sprint events, as 

this allows power output to be maximised, but that road time trial events benefit from a slightly 

reduced cadence (~90-100 rev·min−1) since this has been shown to improve cycling economy and 

lower energy demands. In addition, Lucia, Hoyos and Chicharro (2001) reported that professional 

riders adopt cadences around 90 rev·min−1 on the flat and around 70 rev·min−1 when ascending 

steep gradients, both suggesting that cadences above 100 rev·min−1 are unlikely to be seen. 
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Knee-Ankle coupling 

At the Knee-Ankle coupling, as shown in table 8-2, there are good levels of agreement between 

systems (ICC = 0.75–0.9) when looking across a full revolution at all cadences except 100 rev·min−1. 

At 100 rev·min−1 an ICC value of 0.712 shows that the levels of agreement between systems fall 

marginally below the “good” boundary and suggests that measures for this coupling may need to be 

viewed with a degree of caution. 

Interestingly, when further subdividing the data recorded at 100 rev·min−1 for two-phase analysis, it 

becomes evident that there is something occurring at this coupling in the latter stages of a 

revolution which causes lower levels of agreement between systems. This is evidenced by good (ICC 

= 0.843) levels of agreement during the power phase and only moderate (ICC = 0.682) in the 

recovery phase. Further investigation seems to point to an event which occurs between 210o and 

330o of the revolution as, during four-phase analysis, there are excellent or good levels of agreement 

in the top, power and bottom phases (ICCs = 0.958, 0.874 and 0.873 respectively) but only moderate 

agreement during the recovery phase (ICC = 0.528). 

This may be linked to riders employing a process known as “ankling” (Wozniak Timmer, 1991) which 

aims to maintain positive torque production for the entire cycle (Davis and Hull, 1981) via subtle 

changes in dorsi/plantarflexion at the ankle and therefore changes of pedal orientation.  

Houtz and Fischer (1959) originally suggested that this required maximum dorsiflexion to occur 

between 337 and 23o of a pedal revolution with maximal plantarflexion occurring just past 180o. 

Their suggestion was the this allowed cyclists to overcome “dead spots” in power production by 

effectively pushing and pulling the pedal past the top and bottom centre positions respectively. 

Cavanagh and Sanderson (1986), however, suggested that in elite riders, pedal orientation went only 

slightly below the horizontal into a dorsiflexed position and that this occurred nearer to 90o through 

a revolution. Conversely, they showed that the maximum plantarflexed position occurred at 

approximately 285o, placing it firmly in the recovery phase of the current study’s four phase analysis. 

It may be that the orientation of the IMU on the foot makes the subtle motions involved in this 

“ankling” technique less easy to identify and would go some way to explaining the slightly lower 

levels of agreement shown in this phase. 

Lower levels of agreement in the Knee-Ankle coupling may also be attributed to slightly variable IMU 

orientation between participants, especially with the foot sensor. Although efforts were taken to 
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orientate the axis perfectly in the desired direction every time this may not have been completely 

possible due to the participants’ choice of footwear and the difficulties reported by Seel, Raisch and 

Schauer (2014) when they identified that the human body lacks even surfaces and right angles upon 

which to base sensor orientations. This is not something which can be easily rectified going 

forwards, especially as the participants in outdoor studies will be required to wear their chosen 

cycling footwear, but the levels of agreement shown here are high enough to suggest confidence in 

using IMUs in place of a motion capture system.  

Overall rating of agreement and limitations 

The overall levels of agreement seen at the Hip-Knee coupling (0.902) and Knee-Ankle Coupling 

(0.765) during this investigation give confidence that this provides a valid method of calculating CRP 

during outdoor cycling events. At the time of writing, there appeared to be no published articles 

which had investigated the validity of Xsens Dots in this way and only one which reported ICC values 

to rate the agreement between two systems. 

Bailey, Uchida, Nantel and Graham (2021) reported levels of agreement between systems of 0.24, 

0.26 and 0.10 for flexion/extension ROM of the hip, knee and ankle respectively when investigating 

variability in during gait. They also reported agreements of 0.70, 0.48 and 0.24 at the same joints 

when investigating the variability of these measures across multiple gait cycles. It should be 

acknowledged that Bailey et al.’s study reported agreements for joint ROM in isolation rather than 

as coupled pairs so this is not a like for like comparison, but the levels of agreement reported in the 

current study are far greater than those reported in the only published article that had tested data in 

the same way which was available and still concluded that ICCs were mostly good to excellent in the 

primary plane of motion for ROM and in all planes for variability of movements. 

The lack of similar published papers makes it difficult to compare the current findings and it should 

be acknowledged that some may question the findings reported here as they are based on data from 

relatively few participants. Although it is true that there were only 8 participants in this study, the 

analysis of 10 revolutions per participant per cadence results in a total of 320 comparisons between 

systems when combining all cadences. If the confidence that the reader has in this investigation is 

based on the number of comparisons between systems, rather than the number or participants 

these comparisons have come from, then this should provide adequate evidence of rigor. 

4.5.5 Conclusion 

Despite the limitations outlined above, the levels of agreement between systems reported here are 

generally either good or excellent for both the Hip-Knee and Knee-Ankle couplings during indoor 
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cycling. This is especially true in the cadence range that it is expected athletes would adopt for a 

cycling time trial performance. It is also worth noting that the levels of agreement displayed here 

suggest far greater validity than either of the methods investigated in Studies 3 or 4. It can, 

therefore, be suggested that the use of Xsens Dots is a valid method of measuring continuous 

relative phase and is recommended to be used in field-based testing.  

 

Having shown evidence of a relationship between greater levels of movement variability and better 

overall performance in a cycling time trial (Study 1), established a valid method of measuring power 

output (Study 2) and a valid method for recording kinematic measures of joint coupling behaviours 

(Study 5), Study 6 was designed to make use of the validated methods to investigate whether cyclists 

alter their technique across a number of measurement windows within a single time trial 

performance. In essence, the aim was to investigate whether cyclists display movement variability in 

order to adapt to changing task constraints?
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5. STUDY SIX: Intra-individual variability in sagittal plane kinematics during field-based 

time trial events. 

 5.1 Introduction 

Cycling is a worldwide pastime with more than 5 million people over the age of 16 cycling at least 

once a month in England alone (Cycling UK, 2019). As such, cycling has received significant scientific 

attention with the most common method of motion analysis being to focus on the movement of the 

lower limbs (Enoka, 2000). This analysis has typically been limited to the sagittal plane (Ferrer-Roca, 

Roig, Galilea and Garcia-Lopez, 2012; Carpes et al., 2006) due to the large ranges of motion seen at 

the hip (42-44°), knee (73-78°) and ankle joints (21-25°) in this plane (Bini, Senger, Laferdini and 

Lopes, 2012) compared to the frontal and transverse planes (Umberger and Martin, 2001). 

The values above were produced in laboratory-based investigations as this allows researchers to 

overcome a number of methodological challenges when studying cycling. The way in which this is 

typically achieved is to recreate the cyclist’s equipment set up using an ergometer in a controlled 

environment (Fonda and Sarabon, 2010). Although this is undoubtedly the easiest approach for 

researchers, there is a readily available body of literature which focusses on the ecological validity of 

such an approach. 

For example, studies by Jobson et al. (2007) and Jobson, Nevill, George, Jeukendrup and Passfield 

(2008) have consistently shown that there is a significant difference in cycling speed and power 

output between laboratory and road conditions during time trial events. In addition, Bertucci, 

Grappe and Groslambert (2007) have shown more broadly that crank torque profiles are significantly 

different when comparing laboratory-based and outdoor cycling conditions.    

In addition, there is growing support for the notion that intra-individual movement variability may 

perform a functional role in task performance (Van Emmerik, Hamill, and McDermott, 2005), 

especially when the task requires adaptability of complex motor patterns within dynamic 

performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006). By 

using a cycle ergometer in a laboratory setting it is possible that the dynamic elements of the 

performance environment are controlled to such a degree that there isn’t enough demand placed on 

the system in order to require a variable response. That is to say, removing task perturbations such 

as variations of road surface, weather conditions, and incline may unintentionally limit the amount 

of intra-individual movement variability a cyclist exhibits in order to complete the task. As a result, 

laboratory-based testing may not give a true representation of the movement strategies employed 
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by cyclists; outdoor assessment may provide further information during training and/or racing in a 

more ecological scenario (Carpes, Bini and Quesada, 2014).  

In field-based assessments of cycling performance there is evidence that cyclists displayed differing 

levels of maximal aerobic power and produce altered crank torque profiles depending on the 

gradient of the course (Bertucci, Grappe and Groslambert, 2007) and will also adopt altered joint 

kinematics during hill climbing (Arkesteijn, Jobson, Hopker and Passfield, 2013) or when the cyclist 

pedals while out of the saddle (Wozniak-Timmer, 1991).  In addition, elite endurance cyclists 

changed their pedalling technique when faced with an increasing workload at constant cadence 

(Kautz, Feltner, Coyle and Baylor, 1991), all of which suggests they display a level of intra-individual 

movement variability.  

Despite the evidence above, there are very few studies which have investigated the role of intra-

individual variability within a single cycling performance. The closest approximation of this would be 

studies which have investigated the effects of differing pacing strategies during time trial 

performances. For example, Swain (1997) investigated the effect that varying power output would 

have on cycling performance in hilly or windy conditions. This simulation exercise concluded that 

significant time savings could be produced by slightly increasing power on uphill or headwind 

segments while compensating with reduced power on downhill or tailwind segments. 

Seeking to go beyond a theoretical model, Cangley, Passfield, Carter and Bailey (2011) investigated 

this by instructing 20 experienced cyclists to ride 4 trials over a 4 km course. For 2 trials, riders were 

asked to maintain a constant power output while in the other 2 trials power output was varied in 

response to gradient. In this instance the variable power output strategy reduced completion time 

by 12 ± 8 s (2.9 %), which was statistically significant (p < 0.001). It was concluded that applying a 

variable power strategy can improve cycling performance in a field time trial where the gradient is 

not constant. 

Although this would appear to evidence the functional role of movement variability within cycling, it 

should be noted that Cangley, Passfield, Carter and Bailey (2011) used a relatively homogenous 

sample group (Age 34 ± 8 yrs, mass 76 ± 8 kg, competitive experience 8 ± 4 yrs) who were similar in 

terms of their competitive level (current times of 21–25 min for a 10-mile time trial), required them 

to complete a relatively short course (4 km/2.49 miles) and only reported power output and 

completion time. As such, Cangley, Passfield, Carter and Bailey (2011) offer no comment on the 

movement patterns employed by the cyclists and whether they may have differed across the 

duration of the event.  
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The aim of this study, therefore, was to investigate if cyclists of differing skill levels employ differing 

levels of intra-individual movement variability across a number of successive measurement points 

during a ten-mile cycling time trial event. The suggestion being that the more experienced riders 

would have more experience solving the “degrees of freedom problem” (Bernstein, 1967) and 

therefore adapting their movement patterns to address the specific combination of task 

perturbations seen at various stages of a time trial performance.  

The hypothesis was that more experienced cyclists would display greater levels of intra-individual 

movement variability, as measured via continuous relative phase analysis, than their less 

experienced counterparts. 

5.2 Methods 

Participant information 

11 participants volunteered to take part in this study (8 Male, 3 Female, age 37.1 ± 8.47yrs, height 

1.75 ± 0.08m, mass 79.66 ± 8.31kg). There was a range of experience levels across the sample with 

mean cycling activity self-reported as 5.31 ± 3.96 hours or 68.10 ± 75.20 miles per week. All 

participants were injury free at the time of testing, maintained their normal diet and daily activity 

patterns throughout the testing period and provided written informed consent before taking part in 

the study. Local ethical approval was provided by the University of Winchester. 

Testing procedure and instrumentation 

Participants were required to complete three time trial events on a standardised 10mile (16km) 

course which was selected due to the variable nature of the terrain and, more specifically, the 

presence of two significant climbs. A course profile is displayed in Figure 9-1.   

Figure 5-1. Course Profile. 

Throughout all testing sessions, participants used their own bike and choice of clothing. The use of a 

helmet was mandatory and all participants had safety lights attached to their bike due to testing 

events taking place on public roads. All testing events took place in, as close as possible, similar 

weather conditions (Mean Temperature = 17.7 ± 4.8 °C, Wind speed = 12.2 ± 3.3 km·hr-1) and in the 
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event of poor weather, tests were postponed. Testing events were separated by a minimum of 48hrs 

to allow complete recovery between time trial events. 

For the first event participants were instructed to ride at a relaxed pace so that they could note any 

features of the course and familiarise themselves with the turn-by-turn navigational cues given by 

the Garmin Head Unit (Garmin Edge 1000, Garmin Ltd., Schaffhausen, Switzerland).  

During the second and third time trial events, participants were instructed to complete the course as 

fast as possible and were given access to the data they would typically use to monitor rides (e.g. 

heart rate, power output, speed) via a Garmin head unit (Garmin Edge 1000, Garmin Ltd., 

Schaffhausen, Switzerland) mounted on their handlebars. Participants were given no instructions 

concerning body position, gearing, cadence or pacing strategy. 

Inertial measurement units (Xsens Dot, Xsens technologies, Netherlands) were attached at the 

midpoint of the thigh and shank segments and on the superior aspect of the foot. The thigh sensor 

was placed on the lateral aspect, mid-way along the line between the greater trochanter and lateral 

femoral condyle markers oriented so that the x axis of the sensor’s local co-ordinate system ran 

along the longitudinal axis of the limb segment. Similarly, the shank sensor was also placed on the 

lateral aspect, mid-way along the line between the lateral femoral condyle marker and lateral 

malleolus markers, again oriented so that the x axis of the sensor ran along the longitudinal axis of 

the limb segment. The foot sensor was attached to the superior aspect of the participant’s shoe, as 

close to the border between intermediate and lateral cuneiforms as was possible to determine via 

palpation. The sensor was oriented such that the x axis of the sensor ran along the longitudinal axis 

of the foot and was as horizontal as possible given the underlying structure and footwear.  

Participants used their own cycling shoes and those who normally rode with cleats incompatible 

with the PowerTap P1 pedals (CycleOps, Madison, WI, USA) had their cleat position replicated with 3 

bolt Kéo cleats (Look cycle international, Nevers, France) to allow for power output to be measured 

throughout the ride. It should be noted, however, that two participants typically rode with flat 

pedals and another three were unwilling to have their pedals changed. In these cases, the PowerTap 

pedals were not used and, as such, power output will not be discussed here due to the incomplete 

nature of the dataset. 

Data analysis 

Data was only recorded during the third time trial where all devices were set to record for the full 

duration of the ride. IMUs (Xsens Dot, Xsens technologies, Netherlands) measured at a frequency of 

800Hz and applied a strap down integration method to compute orientation and velocity values 



 

122 | P a g e  
 

from gyroscope and acceleration data. 3D orientation of the sensor was calculated by the 

manufacturer’s built in Kalman filter core algorithm which, they claim, is optimized for human 

motions and reduces drift during longer duration measurements. Data was reduced to reported 

values at 120Hz by the onboard processing native to the manufacturer’s app to allow Bluetooth 

transfer of data to a logging device (Samsung S9, Samsung Electronics, South Korea) without 

presenting an excessive computational load.  

Once data was extracted from the IMUs, seven measurement windows were identified across the 

duration of the ride using GPS and time data from the Garmin Head Unit. The measurement 

windows were chosen to allow comparison of limb movement across similar gradients early and late 

in the ride and the addition of a window at the point of maximum gradient allowed a comparison of 

the extremes of gradient experienced on course. Details of measurement locations can be seen in 

Table 9-1.  

Table 5-1. Details of measurement windows across the 10mile (16.09km) time trial course. 

Point Nickname Elapsed distance from start Gradient 

1 Flat 1 0.4 miles (0.64 km) 0.0% 

2 Climb 1 1.5 miles (2.41 km) 4.0% 

3 Descent 1 2.1 miles (3.38 km) -4.5% 

4 Flat 2 5.1 miles (8.21 km) 0.0% 

5 Climb 2 8.7 miles (14.00 km) 4.0% 

6 Steepest climb 8.9 miles (14.32 km) 12.9% 

7 Descent 2 9.3 miles (14.97 km) -4.5% 

 

At each measurement window, 10 seconds of IMU orientation data was selected and converted to 

sagittal plane joint angles at the hip, knee and ankle using a custom-built Excel spreadsheet 

(Microsoft Excel, Microsoft corporation, Washington, USA). Joint angles were then used to calculate 

joint angular velocity values. Using the point of maximum knee flexion as the start of each 

revolution, data was extracted for 10 complete pedal revolutions per participant per measurement 

point and then interpolated to 100 time points. This was then used to calculate mean continuous 

relative phase (CRP) across the 10 pedal revolutions at two intra-limb couplings: (i) knee 

flexion/extension–ankle plantarflexion/dorsiflexion (KA) and (ii) hip flexion/extension–knee 

flexion/extension (HK). 
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CRP was used in acknowledgement of the fact that the motion of one segment subsequently 

influences the motion of an adgecent segment, and therefore the study of isolated joints does not 

effectively capture the complexity of the coordinated motion (Bartlet et al. 2007). This is especially 

true when one end of the kinetic chain is attached to a pedal and Chapman et al. (2009) sugested 

that the consideration of the coupling relationship between segments may therefore be espiecially 

crucial in the analysis of motion within the field of cycling.  

Additionally, CRP analysis has been deemed to be more sensitive to changes in coordination (Davids, 

Bennett and Newell, 2006) and could offer greater insight into the changing techniques employed in 

response to learning, environmental changes such as wind speed or road surface or other 

independent variables (Burgess-Limerik, Abernathy and Neal, 1993).   

Having calculated CRP at the HK and KA couplings, the coefficient of variation (CV%) for these values 

was calculated using the formula below: 

Co-efficient of variation = (standard deviation/mean)*100 

This produced a percentage value (CV%) which represents the amount of variance each participant 

displayed between the seven measurement windows. This was designed to ascertain whether a 

relationship existed between the amount of variation a cyclist showed between measurement points 

and the time taken for them to complete the time trial. As such, a Pearson’s product moment 

correlation coefficient was calculated to test for the relationship between CV% and the time taken to 

complete the 10-mile time trial (TimeTT).  

This process was repeated with each pedal revolution being split into “power” and “recovery” 

phases (0-180o and 180-360o respectively) in a similar manner to Sides and Wilson (2012) and this 

was further extended to subsequently divide each revolution into four phases as described by Dorel, 

Couturier and Hug (2009) to produce separate top, drive, bottom and recovery phases (see Figure 9-

2). 
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Figure 5-2. The four phases per pedal revolution.  

Adapted from Dorel, Couturier and Hug (2009) 

 

In addition to calculations of CV% of CRP, maximum and minimum flexion/extension values were 

taken at the hip, knee and ankle for each of the 70 extracted revolutions per participant (10 per 

measurement window). These values were then tested via a one-way repeated measures ANOVA to 

check for significant differences between measurement windows. Any significant ANOVA results 

were followed up by Bonferroni adjusted T-tests to establish where the differences occurred. Follow 

up testing consisted of pairwise comparisons of all measurement windows across the time trial 

course. The 21 comparisons between measurement windows (e.g. Flat 1 – Climb 1, Flat 1 – Descent 

1, Flat 1 – Flat 2…, etc.) were completed for all six variables (Minimum hip ankle, Maximum hip 

angle, Minimum Knee angle, Maximum Knee angle, Minimum ankle angle and Maximum ankle 

angle), providing a total of 126 comparisons per participant. Significant differences between 

matched pairs of time points (e.g. flat 1 vs flat 2, climb 1 v climb 2) would represent an alteration of 

technique due to fatigue. 

All statistical testing was performed using IBM SPSS statistics version 24 (IMB Corporation, New 

York, NY, USA), with a significance level set at p < 0.05. 

5.3 Results 

Full revolution analysis 

Using data from the full, undivided pedal revolutions, the correlation coefficient between CV% of 

CRP and TimeTT at the Hip-Knee joint coupling was considered to be a statistically significant, strong 

negative relationship (r = -0.719, p = 0.013). This relationship can be seen in figure 9-3. 

Top 

Drive Recovery 

Bottom 



 

125 | P a g e  
 

Figure 5-3. Relationship between Coefficient of Varitaion (CV%) and finishing time (TimeTT) for full 

pedal revolution data at the Hip-Knee coupling. 

 

Similarly, the correlation coefficient for the relationship between CV% of CRP and TimeTT at the 

Knee-Ankle coupling also suggested a statistically significant strong negative correlation (r = -0.812, p 

= 0.002). This relationship is displayed in figure 9-4. 

 

Figure 5-4. Relationship between Coefficient of Variation and finishing time for full pedal 

revolution at the Knee-Ankle coupling. 
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Two phase analysis 

Once pedal revolutions were divided for two phase analysis the CV% of CRP as in the power (0-180o) 

and recovery (180-360o) phases was correlated against TimeTT. 

When considering the power phase, the correlation coefficient between CV% of CRP and TimeTT for 

the Hip-Knee coupling resulted in a non-statistically significant moderate negative correlation at the 

Hip-Knee coupling (r = -0.543, p = 0.084) but a statistically significant moderate negative correlation 

at the Knee-Ankle coupling (r = -0.660, p = 0.027). Both relationships for the power phase are 

displayed in Figure 9-5. 

Figure 5-5. Relationship between CV% of CRP and TimeTT during the power phase. 

 

During the recovery phase, the correlation coefficient between CV% of CRP and TimeTT for the Hip-

Knee coupling (r = -0.566, p = 0.069) and the Knee-Ankle coupling (r = -0.544, p = 0.084) both suggest 

a moderate negative relationship but neither of these represent a statistically significant correlation. 

The relationships displayed during the recovery phase have been plotted in Figure 9-6. 
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Figure 5-6. Relationship between CV% of CRP and TimeTT during the recovery phase. 

 

Four phase analysis 

Having further divided pedal revolutions into top (330-30o), drive (30-150o), bottom (150-210o) and 

recovery (210-330o) phases. CV% of CRP was once more correlated against TimeTT. 

Correlation coefficients and significance values for both joint couplings at each phase of the pedal 

stroke are displayed in Table 9-2. For this mode of analysis, statistically significant correlations 

between CV% of CRP and TimeTT were seen for both couplings during the top phase. All other 

correlations were not statistically significant. 
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Table 5-2. Correlation between CV% of CRP and TimeTT during four phase analysis. 

Statistically significant results are denoted by an asterisk (*). 

Coupling Phase r p 

Hip-Knee Top -0.629 0.038* 

Drive -0.566 0.069 

Bottom -0.324 0.331 

Recovery -0.228 0.499 

Knee-Ankle Top -0.682 0.021* 

Drive -0.596 0.053 

Bottom 0.262 0.437 

Recovery -0.218 0.520 

 

For ease of interpretation, the relationships described in Table 9-2 have been displayed in Figures 9-

7 to 9-10. 

Figure 5-7. Relationship between CV% of CRP and TimeTT in the top phase. 
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Figure 5-8. Relationship between CV% of CRP and TimeTT during the drive phase. 

 

 

 

Figure 5-9. Relationship between CV% of CRP and TimeTT during the bottom phase. 
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Figure 5-10. Relationship between CV% of CRP and TimeTT during the recovery phase. 

 

Maximum/minimum joint angle testing 

Overall ANOVA results suggested that there was a statistically significant difference (P < 0.05) 

between measurement windows for all participants in all variables (Minimum hip ankle, Maximum 

hip angle, Minimum Knee angle, Maximum Knee angle, Minimum ankle angle and Maximum ankle 

angle). 

Follow up pairwise comparison testing revealed statistically significant differences (p < 0.05) were 

present for all participants but there was no obvious relationship between the number of 

differences recorded and the time taken to complete the time trial. P values for the pairwise 

comparisons of gradient matched pairs of measurement windows are presented in table 9-3 with 

statistically significant differences denoted by an asterisk. 

It should be noted at this stage that the table below only features 10 participants as the recording 

capacity of the IMUs was such that the final two measurement windows were not recorded for the 

slowest rider. Therefore, matched comparisons for the “climb” and “descent” pairings are not 

available for the 11th ranked rider. 
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Table 5-3. Comparisons between matched pairs of measurement windows for all participants. 

  

Variable Comparison Participant rank 

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Minimum Hip Angle (°) Flat 1 – Flat 2 0.001* 1.000 <0.001* 1.000 1.000 1.000 <0.001* <0.001* 1.000 0.042* 

 Climb 1 – Climb 2 0.542 1.000 0.093 <0.001* 0.039* 1.000 0.448 0.048* <0.001* 1.000 

 Descent 1- Descent 2 1.000 0.212 1.000 <0.001* 1.000 1.000 1.000 0.115 1.000 <0.001* 

Minimum Knee Angle (°) Flat 1 – Flat 2 0.049* 1.000 <0.001* 1.000 1.000 <0.001* 0.047* <0.001* 1.000 <0.001* 

 Climb 1 – Climb 2 <0.001* 0.004* 1.000 <0.001* <0.001* 1.000 0.481 0.007* <0.001* 0.336 

 Descent 1- Descent 2 0.885 1.000 0.644 0.253 <0.001* <0.001* <0.001* <0.001* 0.885 0.525 

Minimum Ankle Angle (°) Flat 1 – Flat 2 1.000 1.000 1.000 1.000 0.003* 1.000 <0.001* 1.00 0.066 0.744 

 Climb 1 – Climb 2 <0.001* <0.001* 1.000 0.537 1.000 1.000 1.000 0.009* <0.001* <0.001* 

 Descent 1- Descent 2 <0.001* <0.001* 0.012* <0.001* 1.000 1.000 0.004* <0.001* 1.000 <0.001* 

Maximum Hip Angle (°) Flat 1 – Flat 2 0.875 1.000 <0.001* 1.000 1.000 1.000 0.016* 0.351 1.000 0.453 

 Climb 1 – Climb 2 0.502 0.002* 1.000 <0.001* 1.000 1.000 1.000 0.040* <0.001* <0.001* 

 Descent 1- Descent 2 0.223 1.000 <0.001* 1.000 0.564 1.000 1.000 1.000 1.000 <0.001* 

Maximum Knee Angle (°) Flat 1 – Flat 2 0.016* 0.546 1.000 1.000 1.000 1.000 0.025* <0.001* 0.663 <0.001* 

 Climb 1 – Climb 2 1.000 <0.001* <0.001* <0.001* <0.001* 1.000 1.000 0.009* <0.001* <0.001* 

 Descent 1- Descent 2 <0.001* 1.000 1.000 1.000 0.002* 1.000 0.027* <0.001* 1.000 0.099 

Maximum Ankle Angle (°) Flat 1 – Flat 2 1.000 1.000 1.000 1.000 1.000 1.000 <0.001* 0.570 1.000 1.000 

 Climb 1 – Climb 2 <0.001* 1.000 1.000 0.004* 0.004* 1.000 1.000 0.556 0.106 <0.001* 

 Descent 1- Descent 2 <0.001* 0.015* 0.078 1.000 1.000 0.005* <0.001* <0.001* 1.000 1.000 

* Denotes a significant difference between measurement points (p<0.05). 

 

5.4 Discussion 

The results of this study suggest that skilled cyclists exhibit greater levels of intra-individual 

movement variability compared to their less experienced counterparts when completing a ten-mile 

cycling time trial. Far from being detrimental to normal function as historically thought (Bartlett, 

Wheat and Robins, 2007; Davids, Glazier, Araújo and Bartlett, 2003; Van Emmerick and Van Wegen, 

2000), the greater movement variability exhibited by faster riders suggests that it is indeed 

“essential noise” (Davids et al., 2004) and that it can play a functional role in cycling performance.   

Full revolution analysis  

As displayed in Figure 9-3, when analysing data from a full pedal revolution, there is a negative linear 

relationship between the coefficient of variation of CRP values (CV%) shown across the course of the 

time trial event and the amount of time taken to complete the event (TimeTT). For both the Hip-Knee 

and Knee-Ankle joint couplings, this relationship results in statistically significant (p<0.05) 

correlations which are both above the ±0.70 threshold required to be considered as evidence of a 
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strong correlation (Hip-Knee = -0.719, Knee-Ankle = -0.812) according to the guidelines reported by 

Schober, Boer and Schwarte (2018). 

Button, Davids and Schöellhorn (2006) and Bradshaw and Aisbett (2006) stated that a more variable 

movement pattern during the execution of a sporting skill enables greater adjustment for intrinsic 

factors, such as confidence and fatigue, and extrinsic factors, such as wind, temperature and 

gradient. Therefore, it was expected that there would be a negative correlation between the CV% 

values and finishing time in the present investigations as the cyclists who completed the course in 

the shortest time would therefore be displaying the greatest amounts of variation. 

These findings are at odds with those of previous studies which, instead of a linear relationship, 

reported a U-shaped relationship when working with handball players (Schorer, Baker, Fath and 

Jaitner, 2007) and triple jumpers (Wilson, Simpson, Van Emmerik and Hamill, 2008). In these studies, 

the level of intra-individual movement variability displayed by the least skilled athletes was 

increased, advanced athletes demonstrated a period of stability and the highest performers again 

showed increased variability. The shape of relationship reported by Schorer, Baker, Fath and Jaitner 

(2007) and Wilson, Simpson, Van Emmerik and Hamill (2008) could be linked to traditional models of 

motor learning which typically indicate two (Adams, 1971; Gentile, 1972) or three (Anderson, 1982; 

Fitts & Posner, 1967) relatively distinct stages of learning with performance stability in the final 

stage. Whether this applies to the acquisition of expert-level skill or whether skill learning happens 

due to continuous adaptation to performance constraints (Newell, Lui, & Mayer-Kress, 2001, 

Ericsson, 2007) and learning to solve the “degrees of freedom problem” in multiple ways (Bernstein, 

1967) is debateable but it seems that, for the sample of participants recruited for this study at least, 

there is a more linear relationship within cycling.   

Two phase analysis 

Following the example of Sides and Wilson (2012), it was deemed important to go beyond full 

revolution analysis to investigate the nuances of pedalling technique in greater detail. Accordingly, 

the pedal revolution was divided into power and recovery phases (0-180o and 180-360o 

respectively). This was designed to allow inferences to be made as to whether the greater variation 

demonstrated by faster riders was displayed in the phase where they were applying power to the 

pedal or during the phase where the leg was more passive and not actively contributing to the 

forward propulsion of the bike (Wozniak-Timmer, 1991).    

As shown in Figure 9-5, the significant correlation which was seen during the full revolution analysis 

was still present in the power phase for the Knee-Ankle joint coupling (r = -0.660, p = 0.027). Despite 
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showing consistently negative relationships, no other correlations reached a level of statistical 

significance.   

The lack of significant correlations could potentially be attributed to variations in terms of 

participant’s footwear and pedal choices. The participants for this investigation represented a range 

of experience levels (average weekly training load self-reported as 5.31 ± 3.96 hours or 68.10 ± 75.20 

miles per week) which included two relatively inexperienced participants who were uncomfortable 

using clipless pedals. This means that these participants were unable to pull up on the pedal during 

the recovery phase where those using clipless pedals could. Although it has long been questioned as 

to whether this actually happens (e.g. Kautz, Feltner, Coyle and Baylor, 1991), it may be that this is a 

method of adjusting crank torque profiles which was not available to the least experienced 

participants but that could have been employed by the more experienced participants to overcome 

greater workloads (Bini and Diefenthaeler, 2010), alterations in cadence (Bini, Tamborindeguy and 

Mota, 2010) or the effect of fatigue (Amoroso, Sanderson and Henning, 1993). Given the relatively 

small sample size recruited for this study, having two participants who were unable to adjust their 

technique in this way may have artificially masked an existing relationship.  

It could also be that dividing the pedal revolution into two phases masks the variability that is 

present by artificially partitioning the pedal revolution into phases which do not truly align with 

events that are inherent within the technique. For example, this simple division does not 

acknowledge the presence of “dead centres” at the top and bottom of the crank revolution (So, Ng 

and Ng, 2005). These events during the crank rotation occur at approximately 0 and 180o and denote 

points where applying a vertical force to the pedal will not result in a rotation of the crank and, 

instead, a tangential force is required to continue crank progression. It is possible that, by dividing 

the revolution into two simple phases, these dead centre events span across the boundary of the 

phases and therefore the evidence of variable motion is lost.  

To overcome this, a quarter split which is rotated by some 30o was adopted, similar to that of Dorel, 

Couturier and Hug (2009), Dorel et al., (2009) and Lanferdini, Jacques, Bini and Vaz, (2014). This 

ensures that the influence of top and bottom dead centres are contained within phases at the top 

and bottom of the rotation and the remaining phases more closely align with the pattern of pedal 

force application identified in previous studies (e.g. Soden Adeyefa, 1979; Peiffer and Abbiss, 2010; 

García-López, Díez-Leal, Ogueta-Alday, Larrazabal and Rodríguez-Marroyo, 2016).    

Four phase analysis 



 

134 | P a g e  
 

One surprising result from the four phase analysis is that there appears to be a weak positive 

correlation (r = 0.262) during the bottom phase of the revolution for the Knee-Ankle joint coupling. 

This is at odds with all other relationships displayed in this analysis as, regardless of the phase or 

joint coupling in question, all other results suggest a negative relationship. 

This result could potentially be attributed to slightly variable IMU orientation between participants 

with regards the foot sensor. Although efforts were taken to orientate the axis in the desired 

direction this may not have been completely possible due to the participants’ choice of footwear 

and the difficulties reported by Seel, Raisch and Schauer (2014) when they identified that the human 

body lacks even surfaces and right angles upon which to base sensor orientations. This is obviously 

not something which can be easily overcome and it is unclear why it should only affect the results in 

this particular phase of the pedal revolution.   

In contrast, there were statistically significant negative linear correlations in the top phase of the 

revolution for both the Hip-Knee joint coupling (r = -0.629) and Knee-Ankle joint coupling (r = -

0.682). According to the guidelines published by Schober, Boer and Schwarte (2018) these 

correlation co-efficient are both at the high end of what should be considered to represent a 

moderate correlation (±0.400–0.690) with the Knee-Ankle joint coupling very close to being 

considered as strong. This suggests that there is a greater level of adjustment being made at the top 

of the pedal stroke (330-30o) by the riders who finished the time trial in less time. This is similar to 

the findings of Christiansen, Bradshaw and Wilson (2008) who observed increased movement 

variability at the top and bottom dead centres of the pedal revolution and suggested that this would 

allow for greater adaptation to changing conditions (extrinsic, e.g. terrain; intrinsic, e.g. fitness, 

fatigue) and that it would reduce the repetitive stress on the individual joints. It is also interesting to 

note that this phase is very closely aligned to the period where Houtz and Fischer (1959) originally 

suggested that cyclists should undertake “ankling”. 

Ankling requires maximum dorsiflexion to occur between 337 and 23o of a revolution and was 

suggested to allow cyclists to overcome “dead spots” in power production by effectively pushing the 

pedal past the top dead centre position. Theoretically, this would mitigate the effects of the top 

dead centre position, maintain positive torque production for the entire cycle and, therefore, 

maintain a higher average speed (Davis and Hull, 1981).  

There is some debate as to whether cyclists are even able to adopt this strategy. Cavanagh and 

Sanderson (1986) concluded that the ankling pattern is “anatomically and mechanically impossible if 

the rider remains in the seat” and a number of dated studies claim that many elite cyclists do not 
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adopt this technique (Cavanagh and Nordeen, 1976; Faria and Cavanagh, 1978; Lafortune and 

McLean, 1989).  

In contrast, Kautz, Feltner, Coyle and Baylor (1991) saw an ankling adaptation in response to 

increased workload in half of their participants and Zommers (2000) concluded in his doctoral 

dissertation that it was indeed physically possible. Regardless of whether it is widely adopted or not, 

it is interesting that a recognised strategy of technique adaption exists in the exact phase where this 

investigation has seen a significant relationship between the level of variability a participant displays 

and the time it takes them to complete a time trial event. In order to further investigate the 

potential alterations made to joint movements, the focus of this investigation shifted from the 

variability of CRP values to the variability of finite joint positions themselves. 

Maximum/Minimum joint angles  

Having seen evidence of greater variability in faster riders between measurement windows, the next 

step was to investigate the finite values for extremes of joint angle displayed within each 

measurement window. It was hypothesised that there would be a greater number of significant 

differences between measurement windows for the faster riders as this would represent them being 

more capable of adapting their motor patterns within a dynamic performance environment (Button, 

Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006). 

Overall ANOVA results suggested that there was a statistically significant difference (p < 0.05) 

between time points for all participants in all variables. Thus, all participants demonstrated a 

statistically significant alteration of their minimum and maximum joint angles at the hip, knee and 

ankle across the course of the time trial. This could potentially be to cope with the ongoing 

perturbations of gradient (Bertucci et al, 2005) or the onset of fatigue (Amoroso, Sanderson, and 

Henning, 1993) but, regardless of reason, it suggests that all participants employed a degree of 

movement variability across the ride. 

In order to establish the location, and potentially the reason for differences, follow up testing 

consisted of pairwise comparisons of all measurement windows across the time trial course. The 21 

comparisons between measurement windows (e.g. Flat 1 – Climb 1, Flat 1 – Descent 1, Flat 1 – Flat 

2…, etc.) were completed for all six variables (Minimum hip ankle, Maximum hip angle, Minimum 

Knee angle, Maximum Knee angle, Minimum ankle angle and Maximum ankle angle), providing a 

total of 126 comparisons per participant.  
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Again, statistically significant differences (p < 0.05) were present for all participants but there was no 

obvious relationship between the number of differences recorded and the time taken to complete 

the time trial. For example, the 5th, 8th and 10th ranked participants all displayed a similar number of 

differences (85.67 ± 3.05) but finished the time trial with over 5 minutes difference (322 seconds) in 

their finishing times. Conversely, the two participants who finished in the most similar times (a 

difference of 33 seconds) showed 54 and 83 significant differences respectively and were ranked 

near the middle of the group (4th and 5th) in terms of finishing time. 

Figure 5-11. Relationship between the number of significant differences recorded and finishing 

rank. 

This lack of a clear pattern was further supported by a correlation co-efficient of 0.315 between the 

number of differences seen and the finishing time trial (see Figure 9-11). It should be noted at this 

stage that the figure above only features 10 participants as the recording capacity of the IMUs was 

such that the final two measurement windows were not recorded for the slowest rider. 

That there isn’t an established relationship here (r= 0.315) is perhaps unsurprising when compared 

with the findings of previous studies that have considered the effect of skill level or gradient. When 

comparing novice and elite cyclists, Chapman et al (2009) reported that, despite using different 

patterns of leg muscle recruitment when cycling, the two groups did not display significantly 

different joint angles or joint velocities. They did concede that there were some minor differences 

between novice and elite cyclists in terms of the absolute range of motion at the ankle but 

concluded that this was not of consequence. Likewise, Fonda and Sarabon (2012) reviewed a wealth 
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of literature concerned with uphill cycling and concluded that, although changes in muscular activity 

are present, joint dynamics are not substantially altered during seated cycling compared to cycling 

on level terrain. 

In order to assess whether participants adjusted their technique to mitigate fatigue, the 

comparisons between gradient matched pairs of measurement windows (e.g. flat 1 vs flat 2) were of 

the most interest (see Table 9-3). In theory this allowed for comparison of technique throughout the 

time trial where the participant was faced with the same combination of task constraints but was 

performing at a heightened state of fatigue in the later window of each comparison. Fatigue is 

unavoidable in a cycling time trial due to the intensity of performance (Kenefick et al., 2002) and yet 

there did not seem to be any pattern as to which participants demonstrated significant differences 

between measurement windows. This is, perhaps, indicative that the gradient a participant is cycling 

over is a greater driver of movement variability than their fatigue state in much the same way as 

Padulo et al.  (2023) concluded that variability during running is more effected by gradient than 

speed. 

Two participant comparisons 

Despite the results discussed above, the statistically significant strong negative relationship shown in 

CV% of CRP suggest that slower riders displayed less variability. This also became apparent while 

extracting the joint angle data as there was a persistent qualitative impression that the data from 

slower riders appeared to be more consistent. In order to investigate this further, the decision was 

taken to compare joint angle kinematic data from the fastest and slowest riders. 

For context, the fastest rider (Male, 43yrs, 1.85m, 85kg) self-reported their average weekly training 

load at approximately 14 hrs or 214 miles. At the time of the study, they held a Category 3 British 

Cycling race license and had been in this category for the previous 8 seasons. They reported their 

personal best 10-mile (16km) time trial result at 19 minutes and 12s (1152 seconds) and completed 

the course for this study in 26 minutes and 40s (1600 seconds). 

The slowest rider (Male, 36yrs, 1.80m, 90kg), by contrast, self-reported their average weekly training 

load at approximately 2 hours or 20 miles, most of which was completed off road. They had never 

held a British Cycling race licence and had never previously completed a 10-mile (16km) time trial. 

They completed the course for this study in 41 minutes and 21 seconds (2481 seconds).   

In order to compare the two riders, the normalised joint angle data from all 10 pedal revolutions 

recorded during the “Flat 1” measurement window were graphed for the hip (Figure 9-12), Knee 

(Figure 9-13) and Ankle (Figure 9-14).   
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a) 

b) 

Figure 5-12. Hip angle displayed through all 10 pedal revolutions during "Flat 1" for the fastest 

rider (a) and the slowest rider (b). 
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a) 

 

b) 

Figure 5-13. Knee angle displayed through all 10 pedal revolutions during "Flat 1" for the fastest 

rider (a) and the slowest rider (b). 
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a) 

 

b) 

Figure 5-14. Ankle angle displayed through all 10 pedal revolutions during "Flat 1" for the fastest 

rider (a) and the slowest rider (b). 

 

Figures 9-12, 9-13 and 9-14 suggest that the faster rider (graph a in all figures) appears to show more 

variation across the sample of the 10 revolutions than the slower rider. This is especially apparent 

when looking at the hip and knee data (Figures 9-12 and 9-13). It may be less evident in the ankle 

data but, as shown in Study 5 of this thesis, the IMU data at the ankle joint is potentially less reliable 

and therefore should be interpreted with caution. 
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Having somewhat confirmed the qualitative impression that the faster riders were more variable 

across the 10 revolutions recorded in the first measurement window (Flat 1), it was then important 

to explore whether this trend continued in all other measurement windows. In order to achieve this, 

an initial graphing exercise was undertaken which plotted the normalised joint angle data for the 1st 

revolution from each measurement window (Figures 9-15 to 9-17). It should be noted at this stage 

that the figures below only feature the first 5 measurement windows because, as mentioned earlier, 

the recording capacity of the IMUs was such that the final two measurement windows were not 

recorded for the slowest rider. As such, data from the “Steepest climb” and “Descent 2” windows 

have been omitted from the fastest rider graphs to allow for clearer comparisons to be drawn. 

a) 

b) 

Figure 5-15. Normalised Hip joint angle taken from the 1st revolution at each measurement 

window for the fastest rider (a) and the slowest rider (b). 

-90

-80

-70

-60

-50

-40

-30

-20

-10

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

H
ip

 a
n

gl
e 

(D
eg

re
es

)

% of rev.

Flat 1

Climb 1

Descent 1

Flat 2

Climb 2

-80

-70

-60

-50

-40

-30

-20

-10

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

H
ip

 a
n

gl
e 

(D
eg

re
ss

)

% of rev.

Flat 1

Climb 1

Descent 1

Flat 2

Climb 2



 

142 | P a g e  
 

 

 

a) 

 

b) 

Figure 5-16. Normalised Knee joint angle taken from the 1st revolution at each measurement 

window for the fastest rider (a) and the slowest rider (b). 
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a) 

 

b) 

Figure 5-17. Normalised Ankle joint angle taken from the 1st revolution at each measurement 

window for the fastest rider (a) and the slowest rider (b). 

 

Again, qualitative judgements from the figures above seem to confirm that there is more variation 
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It is important to acknowledge that the figures above only include the first analysed revolution from 

each measurement window and therefore are open to misinterpretation due to the incomplete 

dataset. Additionally, the practice of normalising the data to a standardised number of time points, 

although helpful to allow for comparison, may be masking elements of variability which are present. 

If, for example, the participants adjusted their cadence in order to meet the changing demands of 

the task, this would affect the number of samples that are recorded during each pedal revolution. 

Such variation would not be present in data which has been interpolated to 101 time points and so 

potential sources of variability may be missed.  

In order to address these concerns, the next exploratory step was to use non-normalised joint angle 

data to amalgamate the 10 recorded revolutions at each measurement window. This enabled the 

visualisation of a representative curve for each measurement window using mean values from all 10 

revolutions (Figures 9-18 to 9-20). Once again, data from the final two measurement windows has 

been omitted from the fastest rider graphs so as not to create unfair comparisons. 

Here it is clear to see that, as suggested by the correlations reported earlier, the fastest rider 

displays far greater variability in terms of ankle position than the slowest rider. This somewhat 

confirms the suggestion that better riders were able to adapt their technique to a changing set of 

task perturbations. This is especially evident in the ankle data (Figure 9-20) where it appears that the 

faster rider employed a similar technique for both climbs, which was notably different from that 

used during the flat and downhill sections.   
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a) 

 

b) 

Figure 518. Representative amalgamated Hip angle traces for the fastest (a) and slowest (b) 

participants. 
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a) 

 

 

b) 

Figure 5-19. Representative amalgamated Knee angle traces for the fastest (a) and slowest (b) 

participants. 
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a) 

 

b) 

Figure 5-20. Representative amalgamated Ankle angle traces for the fastest (a) and slowest (b) 

participants. 
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Comparison with laboratory-based data (from Study 1) 

Although it sits outside the scope of the current study, the overall research question of the thesis 

means that it is worth establishing whether the outdoor testing environment did actually require a 

more variable response due to changing task constraints. As such the correlation coefficients for 

both testing environments (indoor data from Study 1 and outdoor data from the current study ) are 

displayed in the table below. 

 Table 5-4. Comparison of correlation coefficients between CV% of CRP and TimeTT for different 

testing environments. 

 

Analysis Method Coupling Phase Indoor Outdoor  

Full Revolution Hip-Knee  -0.375 -0.719* 

 Knee-Ankle  -0.126 -0.812* 

Two-Phase Hip-Knee Power  -0.218 -0.543 

  Recovery -0.096 -0.566 

 Knee-Ankle Power  -0.144 -0.66 

  Recovery -0.489 -0.544 

Four-Phase Hip-Knee Top -0.017 -0.629* 

 Drive 0.019 -0.566 

 Bottom 0.59 -0.324 

 Recovery -0.072 -0.228 

 Knee-Ankle Top -0.378 -0.682* 

 Drive 0.082 -0.596 

 Bottom -0.04 0.262 

 Recovery -0.505 -0.218 

*Denotes a statistically significant result (p<0.05). 

As shown in table 5.4, there is a stronger negative relationship between the amount of movement 

variability a rider displayed and the time in which they completed the time trial shown during 

outdoor time trials than those reported for the equivalent indoor event. This is the case regardless 

of how many phases the pedal revolution is divided into, or which phase is being investigated. The 

suggestion of a stronger relationship in the outdoor setting is further supported by the presence of 

significant relationships for the outdoor data where none were recorded indoor. 
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Although it must be noted that the data being compared here is not from the same group of 

participants performing in both conditions, and therefore does not provide a true comparison, that 

there are stronger relationships displayed in the outdoor data suggests that the variability displayed 

here has a greater overall impact than when the time trial was completed indoors. That is to say that 

the intra-individual movement variability performs a greater functional role when cycling outdoors. 

This serves to support the suggestion that gradient is a greater driver of movement variability than 

fatigue state but would also seem to suggest that, in an environment which includes more task 

variation due to changing conditions throughout an event, the amount of movement variability that 

a cyclist is able to display will more strongly be linked to their finishing time for the event.  

This finding also somewhat validates the conclusions drawn at the end of the indoor investigation 

(Study 1) that there was not enough requirement for a variable movement response due to a lack of 

changes in the task constraints during indoor cycling on a static ergometer. The lack of task 

perturbations indoors may have masked the true nature of the relationship between movement 

variability and performance which is now evident having transferred to a field-based setting.  

Limitations and recommendations 

Throughout this investigation, finishing time for the ten-mile time trial was used as a measure of 

cyclist skill level as it was assumed that cyclists of higher skill levels would finish the event in a 

shorter time. Although there are a number of issues with this approach which have been highlighted 

elsewhere in this thesis (see Section 3.2.4), this was deemed the most appropriate outcome 

measure for this investigation as it is the one which would be of most interest in a competitive 

setting. 

The IMUs used in this investigation (Xsens Dot, Xsens technologies, Netherlands) have previously 

been validated for use in functional movement activities (Cudejko, Button and Al-Amri, 2022) and 

rehabilitation applications (Schlage, Kitzig, Stockmanss and Naroska, 2021). Although this initially 

seems positive, it should be noted that, with the exception of the validation conducted as part of 

this thesis (see Study 5), the majority of these applications involve relatively slow movements which 

do not require a particularly high sampling rate to ensure all the relevant information is collected.  

Despite the IMUs sampling orientation data at 800Hz, the manufacturers then implement an 

unavoidable strap down integration method which reduced the reported values to 120Hz so as not 

to present an excessive computational load on the receiving device and allow data transfer via 

Bluetooth. Although the manufacturer insists that the accuracy and sensitivity of the data is 

preserved, this unavoidable down-sampling of data may have affected the ability to capture the 
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nuance of the pedalling action. For example, if a participant adopted a cadence of 100 rev·min-1, 

which is at the lower end of the typical range adopted for maximal power output (Baron, 2001; 

Baron et al., 1999; Sargeant et al., 1981), reporting at 120 Hz means approximately 72 samples per 

pedal revolution. This then had to be increased back up to 101 timepoints to allow normalised 

comparisons meaning, once more, that the finite details of the data may have been compromised. 

An additional limitation relating to the IMUs was their recording capacity. As mentioned before, the 

capacity of the devices meant that data was not collected for the final two measurement windows 

for the slowest rider. The Xsens Dots do have the option to adjust the reporting frequency of the 

system to only 60 Hz which would have increased the capacity but, as a consequence, would have 

further exacerbated the issues described above.   

Aside from limitations of the equipment, it is also worth acknowledging that this investigation has 

only explored simple flexion/extension couplings in the sagittal plane. Although this is typical of 

most kinematic analysis of cycling (Ferrer-Roca, Roig, Galilea and Garcia-Lopez, 2012; Carpes et al., 

2006), it is possible that participants may be making small adjustments in other planes in order to 

alter their technique from one pedal revolution to the next. The range of motion involved in these 

adjustments is unlikely to be in the order of magnitude seen in the sagittal plane at the hip (42-44o), 

Knee (73-78o) and ankle joints (21-25o) (Bini, Senger, Laferdini and Lopes, 2012), but nevertheless it 

is an area which would be recommended for investigation in future.  

Likewise, the environmental perturbations explored here are limited only to the effects of gradient. 

Given that Glazier, Araújo and Bartlett (2003) suggested that movement variability may perform a 

functional role in helping individuals to adapt to the potentially changeable constraints of a given 

task and that Button, Davids and Schöellhorn (2006) and Bradshaw and Aisbett (2006) both 

suggested that it is particularly important in skills which are performed in dynamic performance 

environments, this is an aspect of this investigation which could be expanded in the future. 

Task perturbations relating to environmental weather condition changes and aerodynamic effects 

from passing vehicles were not measured within this investigation. It is unlikely that these factors 

contributed substantially to the overall finishing time achieved by each participant but, nevertheless, 

it is a factor which may have provided an additional stimulus to promote variability of movement 

and ideally would have been controlled. All testing events took place in, as close as possible, similar 

weather conditions (Mean Temperature = 17.7 ± 4.8 °C, Wind speed = 12.2 ± 3.3 km·hr-1) and in the 

event of poor weather, tests were postponed. Additionally, traffic volume did not change noticeably 

over the duration of any participants’ trials, but a closed course would have been preferrable.  
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Finally, due to the impact of the COVID-19 pandemic (see Section i), this study featured a smaller 

participant sample than planned. The original intention was to recruit three groups of cyclists, each 

featuring a minimum of 8 participants, in order to garner suitable levels of statistical power. These 

three groups would have ideally been: 1) recreational cyclists who had never entered a competitive 

event or had limited cycling experience but were still able to complete the required 10 mile event; 2) 

experienced cyclists, typically cycling club members, who either spent significant time training each 

week or had entered a number of competitive events; and 3) elite competitive cyclists who had 

entered numerous competitive events, had a structured training regimen and/or made their living 

through cycling. It was felt that this might address some of the issues encountered during the indoor 

study (Study 1 of this thesis) where participants were, perhaps, not spread far enough along the 

performance spectrum to enable a true comparison of “novice” versus “experienced” cyclists (see 

Section 3.2.4 for more details about issues with participant groupings). 

Arguably both ends of the desired spectrum were represented in this sample and there was a range 

of expertise across participants (self-reported training load of 5.31 ± 3.96 hours or 68.10 ± 75.20 

miles per week). Although this resulted in a range of 14 min and 41 seconds (881 seconds) across the 

participants’ time trial finishing times (mean 2145 ± 266s for the time trial), there were certainly not 

enough participants to group them in the way described above and provide any level of appropriate 

statistical power. Not only did the small sample limit what was possible in terms of statistical testing, 

it also means that the impact of any single participant on the overall relationship is far greater.  

In addition, it should be noted that the fastest rider recruited for this study only held a Category 3 

British Cycling race license. Despite reporting a personal best 10-mile (16km) time trial result of 19 

minutes and 12s (1152 seconds) they completed the course for this study in 26 minutes and 40s 

(1600 seconds). Not only is this far slower than their personal best, presumably due to the presence 

of two significant climbs, it could be argued that this is not far enough towards the elite end of the 

performance spectrum to allow evidence of the 'U' shaped relationship displayed in previous studies 

of movement variability relating to handball players (Schorer, Baker, Fath and Jaitner, 2007) and 

triple jumpers (Wilson, Simpson, Van Emmerik and Hamill, 2008). 

5.5 Conclusion 

The aim of this study was to investigate whether skilled cyclists exhibit differing levels of intra-

individual movement variability compared to their less experienced counterparts when completing a 

ten-mile cycling time trial. Having shown statistically significant strong negative correlations 

between the coefficient of variation of continuous relative phase values at two joint couplings and 

the time taken to complete the time trial, it can be concluded that this is indeed the case. Intra-
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individual movement variability does appear to play a functional role in cycling performance and, as 

such, should perhaps be encouraged rather than dismissed as has historically been the case. 

In order to gain greater insight into how this variability is being produced, it is recommended that 

future studies investigate muscular recruitment patterns and power output as well as the kinematic 

variables discussed here. 
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6. STUDY SEVEN: Intra-individual variability of surface EMG during indoor time trials 

Following the results of kinematic investigations throughout this thesis, it became apparent that an 

investigation into areas other than kinematic data may be useful in terms of understanding the 

mechanisms at play which may be responsible for producing the movement variability seen during a 

time trial event. This, therefore, led to the consideration of electromyographic data in an effort to 

understand the underlying recruitment patterns being employed by cyclists of varying skill levels and 

the role of muscular activation in driving movement variability. 

6.1 Introduction 

As noted in Sections 2.2.4 and 2.3.1, there is a significant body of historical literature reporting 

muscular recruitment patterns during cycling (e.g. Houtz and Fischer, 1959; Ericson, 1986; Jorge and 

Hull, 1986; Ryan and Gregor, 1992). This literature is invaluable in understanding relative 

contribution of each muscle to overall force production and would, ideally, have been conducted via 

direct measures involving surgically implanted measurement devices (e.g. buckle transducers) which 

record directly from the tendon (Nigg, 2007). Understandably, this approach is rarely used within 

sporting literature with only very few examples available which have used either non-human 

participants (Prilutsky, Herzog and Leonard, 1996) or severely injured populations (Fleming et al., 

1998). Instead, the majority of studies have adopted an indirect measure of force production by 

monitoring muscular recruitment as a force measure proxy (Bini and Carpes, 2014) via the use of 

surface electromyography. 

This approach is not without its limitations (see Section 3.4) but it has been widely adopted as a 

method of studying the activation and co-ordination of various lower limb muscles with the aim of 

understanding how the cycling movement is produced across a range of participant populations. As 

a result, authors have been able to establish profiles of the relative levels and timing of muscular 

activation which can be expected during cycling activities (e.g., Hug and Dorel, 2009. See Figure 10-

1). This “normative data” of sorts is undoubtedly useful for comparison between, for example, an 

injured athlete and a healthy population or for technique optimisation in terms of adjusting an 

individual’s co-ordination but, being constructed from group data as it is, it tells us very little about 

the existence of individual variations away from this “normal” profile. 
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Once again, this is indicative of the traditional assumptions that movement patterns for skilled 

performers are invariant (Bartlett, Wheat and Robins, 2007) and is a position which is increasingly 

being challenged. There is a body of literature which suggests that movement variability may play a 

Figure 6-1. Ensemble curves of muscular activation for 10 different lower limb muscles. 
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functional role in producing a more consistent sporting outcome despite the altering demands 

placed on the performer (Van Emmerik, Hamill and McDermott, 2005) and therefore should be 

viewed as a form of “essential noise” (Davis, Shuttleworth, Button, Renshaw and Glazier, 2004).  

Despite this body of evidence, there is little research that has focussed on intra-individual movement 

variability within cycling. This is even more surprising when considering the fact that the human 

motor system is viewed as “highly redundant” and, as a consequence, it is believed that a single 

motor task can be performed in many ways with a similar end result (Hug, Turpin, Guével and Dorel, 

2010).  

Hug, Bendahan Le Fur, Cozzone and Grelot (2004), Hug, Drouet, Champoux, Couturier and Dorel 

(2008) and Hug, Turpin, Guevel and Dorel (2010) have all shown that, within a population of trained 

cyclists, there are multiple different muscle activity patterns adopted in order to produce a pedalling 

movement. Ryan and Gregor (1992) suggested that the single-joint hip and knee extensors (Gluteus 

maximus, Vastus medialis, and Vastus lateralis) had the lowest Coefficient of Variation (CV) values 

(less than 30%) and attributed this to the role of these muscles as power generators. In contrast, 

variability was generally higher in the hamstring muscles. This suggested that inter-individual 

differences of the EMG patterns were especially apparent for biarticular muscles compared to 

monoarticular ones but, interestingly, higher levels of variability were recorded in the first 20% of 

the pedalling cycle, as measured from top dead centre, for all muscles studied.   

These comparisons, however, are only conducted between participants rather than investigating 

whether a single participant was capable of altering their muscular recruitment patterns within the 

continuous performance of a single skill to better suit the demands of the task. That is to say, there 

was no investigation into the prevalence and potentially functional role of intra-individual variability.  

There are a range of authors who would suggest that as an individual gains expertise in a given skill, 

they are able to develop flexibility within movement patterns to incorporate adjustments due to the 

environmental factors which are imposed upon them (Davids, Bartlett and Wheat, 2008). This is said 

to be especially true when the task requires adaptability of complex motor patterns within dynamic 

performance environments (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006) and 

is theorised to enable greater adjustment for both intrinsic and extrinsic factors, which may 

influence an athlete’s performance.  

Another potential benefit of intra-individual variability of muscular recruitment is the potential for 

this to mediate the effects of fatigue. Fatigue is unavoidable in a cycling time trial due to the 

intensity of performance (Kenefick et al., 2002) and, should invariant movement patterns be 
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employed, this would result in the utilisation of the same muscle tissues repeatedly (Heiderscheit, 

Hamill and van Emmerik, 2002). This would place a great amount of cumulative stress on the tissues 

involved and thus high levels of fatigue become almost inevitable. It has, therefore, been suggested 

that micro adjustments in muscular recruitment patters, and therefore a level of intra-individual 

movement variability, may be a preventative method used to distribute the workload across a wider 

range of tissues (Bartlett, Wheat and Robins, 2007; James, Dufek and Bates, 2000).   

Although it has been suggested that fatigue reduces the adaptability of the neuromuscular system 

(Dingwell et al., 2008; Cignetti, Schena and Rouard, 2009), the ability of higher-skilled athletes to 

utilise multiple muscular recruitment strategies (Hug et al., 2010 and Chapman et al., 2008) and 

employ these to produce a similar movement pattern (Ting, & McKay, 2007; Latash, Scholz & 

Schöner, 2007), combined with evidence that muscle activation variation is not accompanied by high 

inter-individual variability in pedal force application patterns (Hug et al. 2008) may mean that they 

are more able to mitigate the effects of fatigue.  

Employing a level of variability in muscular recruitment may, therefore, be beneficial not only 

because it allows a cyclist to adapt their movement patters to the constraints of the task at the time, 

but also because it could reduce the effects of fatigue. This maintains the overall power output of 

the cyclist but also preserves their ability to react to changing conditions and constraints within a 

prolonged event. This would mean that the cyclist is always able to employ the most appropriate 

technique for the particular combination of perturbations they are faced with and, ultimately, 

improve their performance. 

The aim of this study, therefore, was to investigate levels of intraindividual variability of muscular 

activation during an indoor time trial event to ascertain whether these vary in cyclists of differing 

experience levels and if this plays a functional role in the completion of a simulated indoor time trial 

event. 

It was hypothesised that more experienced cyclists would display greater levels of intra-individual 

movement variability between successive measurement windows throughout the time trial and that 

this would lead to faster overall times in the completion of the simulated event. 

 

6.2 Methods 

Participant information 

Ten trained cyclists volunteered to take part in the study (see Table 10-1). Participants all held a 

current British Cycling Race License (Category 1 n = 1, Category 2 n = 2, Category 3 n = 2, Category 4 
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n = 5) and mean training load was self-reported as 10.85 ± 4.21 hours or 156.00 ± 48.35 miles per 

week. Participants maintained their normal diet and daily activity patterns throughout the testing 

period and provided written informed consent before taking part in the study. Local ethical approval 

was provided by the University of Winchester. 

Table 6-1. Participants' descriptive characteristics 

 Age 

(years) 

Height 

(metres) 

Mass 

(kg) 

Maximum one 

minute Power 

Output 

(W) 

Maximum 

one minute 

Power Output  

(W·kg-1) 

V̇O2 max 

(ml·kg·min-1) 

 

Mean 31.90 1.80 72.10 365.50 5.13 73.21 

Standard 

Deviation 

±10.31 ±0.09 ±9.40 ±69.21 ±0.53 ±12.24 

 

Testing procedure and instrumentation 

Graded exercise testing 

Initial testing consisted of a graded exercise test (GXT) to establish V̇O2max values for each 

participant to ensure physiological similarities across the sample (See Table 10-1). An 

electromagnetically braked cycle ergometer (SRM, Germany) was used to conduct a continuous 

incremental cycling GXT where workload was increased by 5 W per 15 seconds. Initial workload was 

adjusted according to participant’s self-reported estimate of maximal power output so that the total 

duration of the GXT was between 8 and 10 minutes. Criteria for termination of the maximal GXT was 

primarily based on volitional exhaustion.   

Throughout the GXT, online respiratory gas analysis was performed using a breath-by-breath 

automatic gas exchange system (MetaLyzer 3B, Cortex, Germany) following volume and gas 

calibration. HR was monitored using a wireless chest strap telemetry system (Polar Electro T31, 

Kempele, Finland) as well as ratings of perceived exertion every minute using the Borg 6-20 RPE 

scale. 
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Time trial events 

Participants then visited the laboratory on 3 occasions, separated by a minimum of 48 h to allow full 

recovery from the previous trial. During these testing sessions, wireless active surface EMG sensors 

(Delsys Tigno Avanti, Delsys, USA) were attached to the Vastus Medialis, Vastus Lateralis, and both 

heads of the Gastrocnemius on both sides of the body. All sensors were placed in accordance with 

guidance from The SENIAM project (Surface Electromyography for the Non-Invasive Assessment of 

Muscles, http://www.seniam.org/) and were set to record at 1259 Hz. Participants subsequently 

undertook a self-directed warm up followed by a simulated 10mile (16km) time trial and self-

directed cool down. Time trials were conducted from a standing start and participants were given 

free choice of gearing and cadence throughout. 

All trials were conducted in an air-conditioned laboratory using a Wattbike Pro cycle ergometer 

(Wattbike Ltd., Nottingham, UK), with PowerTap P1 pedals (CycleOps, Madison, WI, USA). 

Participants used their own cycling shoes and those who normally rode with cleats incompatible 

with the PowerTap pedals had their cleat position replicated with 3 bolt Kéo cleats (Look cycle 

international, Nevers, France). The ergometer was set to, as closely as possible, replicate the 

dimensions of each participant’s own bicycle and participants were given access to any data they 

would normally ride with to monitor their cycling effort (cadence, power output etc.).  

Perceived exertion was recorded throughout each time trial using Borg’s RPE scale. This was 

conducted at 2 minutes intervals after an initial 5 minutes of riding had been completed. Time trial 

completion time was retrieved from the Wattbike using Wattbike Expert software version 2.60.20 

(Wattbike Ltd., Nottingham, UK).  

Data analysis 

One time trial was selected per participant for analysis. This was typically the last performance to 

allow the first two to act as familiarisation sessions unless, due to technical errors with sensor 

adhesion, there was insufficient data to make this feasible. In this case, the most complete trial was 

selected for analysis.  

Before any data analysis, the raw EMG signal from all muscles was run through a Butterworth 

bandpass filter (40/450 Hz) using the onboard capability of the Avanti sensors (Delsys, USA). This 

output was then used to identify 10 individual pedal revolutions at four time points throughout the 

time trial (5min, 10min, 15min, and 20min). Pedal revolutions were identified using the ensemble 

curves shown in Figure 10-1 as it could be expected that each muscle would have a single peak 

http://www.seniam.org/
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activation point per revolution, with the exception of the lateral head of the Gastrocnemius which 

should display two distinct peaks per revolution. 

To investigate muscular activation, data underwent a Route Mean Square Envelope Calculation with 

100ms duration windows in order to obtain peak amplitude of muscular activation values (V) per 

pedal revolution.  

To investigate fatigue, data underwent a Fast Fourier Transformation in order to display the power 

spectral density for each individual revolution at the same four time points. This allowed for the 

recording of the median frequency (Hz) of muscular activation per pedal revolution. 

All signal processing and value identification was conducted in EMGWorks v4.5.4 (Delsys, USA).  

Having ascertained mean and standard deviation values for the above variables, these could then be 

converted into co-efficient of variation (CV%) using the calculation below. 

Co-efficient of variation = (standard deviation/mean)*100 

CV% was reported rather than a normalised reading of muscular activation as the emphasis is on the 

variability of muscular recruitment and not the finite levels. Calculating CV% in itself provides a 

degree of normalisation (Bedeian and Mossholder, 2000) as it was specifically invented to eliminate 

the influence of the finite magnitude of a value on variability (Pearson, 1897). It does so by relating 

the spread of a data set relative to its own mean and this produces a value which is unitless and 

divorced from any scale of measurement (Simpson, Roe, & Lewontin, 1960). This, therefore, negates 

the need for normalising EMG values at the recording stage as the variation in muscular recruitment 

can be expressed as a percentage and effectively normalised at the reporting stage. 

Statistical testing 

Initial testing was conducted to investigate whether peak amplitude of muscular activation and 

median frequency of muscular activation significantly changed across the time points via two, 

Bonferroni adjusted, one-way repeated measures ANOVAs. This was conducted to ascertain whether 

participants were significantly altering their muscular recruitment patterns between successive 

measurement points due to the influence of changing task constraints (i.e. fatigue). This process was 

then repeated for the variability of these values. 

Following this, testing was conducted to correlate each participant’s CV% for the measured variables 

with the time taken to successfully complete the time trial (TimeTT). This was conducted using 
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Pearson’s Product moment correlation co-efficient and was repeated at each time point (5 min, 10 

min, 15 min and 20 min) throughout the time trial. 

All statistical testing was performed using IBM SPSS statistics version 24 (IMB Corporation, New 

York, NY, USA), with a significance level set at p < 0.05. 

6.3 Results 

Peak amplitude of muscular activation  

Mean and standard deviation of the peak amplitude of muscular activation across each time point 

are displayed in Figure 10-2. 

There were no statistically significant differences (p>0.05) between timepoints during the time trial 

for any of the studied muscles. 

 

Figure 6-2 - Showing Peak Muscular Activation across time trial performance. 

Median Frequency of muscular activation 

Mean and standard deviation of the median frequency of muscular activation across each time point 

are displayed in Figure 10-3. In this figure, an asterisk denotes a significant difference in median 

frequency of muscular activation compared to the previous time point.  
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Within the Vastus Medialis, a statistically significant difference was found between 10 and 15 

minutes (P = 0.02) and 15 and 20 minutes (P <0.001).  

Within the medial head of the Gastrocnemius a statistically significant difference was found between 

10 and 15 minutes (P = 0.032) and 15 and 20 minutes (P < 0.001).  

Within the lateral head of the Gastrocnemius a statistically significant difference was found between 

10 and 15 minutes (P = 0.017).    

All other comparisons were not statistically significant (p>0.05). 

 

Figure 66-3. Median frequency of muscular activation across the duration of the time trial 

performance. 

 

Variability of peak amplitude of muscular activation 

When considering the mean variability of peak amplitude across all muscles there was an increase 

from 5 - 10 minutes (CV% = 12.10 ± 1.92 – 14.30 ± 4.54), another increase from 10 – 15 minutes 

(14.30 ± 4.54 – 16.40 ± 5.86) and then a decrease from 15 – 20 minutes (16.40 ± 5.86 – 14.58 ± 2.59). 

None of these differences, however, were found to be statistically significant (p>0.05).  

Data was then separated to investigate each muscle individually. Comparisons can be seen in Table 

10-2. No statistically significant differences were seen across these comparisons, suggesting no 
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significant difference in the variability of peak amplitude of muscular activation in any muscle across 

the duration of the time trials (p>0.05). 

Table 6-2. Variability of Peak Muscular Activation throughout a time trial effort. 

 CV% at 5 

mins 

(mean ± 

SD) 

CV% at 

10 mins 

(mean ± 

SD) 

CV% at 

15 mins 

(mean ± 

SD) 

CV% at 

20 mins 

(mean ± 

SD) 

Vastus Medialis 12.62 ± 

4.28 

13.82 ± 

5.24 

15.04 ± 

6.56 

16.95 ± 

5.13 

Vastus Lateralis 14.03 ± 

3.82 

13.78 ± 

4.32 

13.22 ± 

4.47 

15.38 ± 

4.87 

Gastrocnemius 

Medialis 

9.67 ± 

2.31 

10.76 ± 

3.91 

12.02 ± 

4.41 

11.34 ± 

4.99 

Gastrocnemius 

Lateralis 

13.46 ± 

6.12 

18.69 ± 

26.21 

25.24 ± 

37.90 

14.72 ± 

4.45 

 

To investigate the influence of expertise, levels of variability of peak muscular activation were then 

correlated against the time taken to successfully complete the time trial (TimeTT). Results can be 

seen in Table 10-3 with statistically significant correlations (p<0.05) denoted by an asterisk (*). 

Table 6-3. Correlation values for CV% against finishing time. 

 Time point Correlation  

co-efficient 

Sig. 

Vastus Medialis 5 min -0.089 0.772 

10 min 0.422 0.151 

15 min 0.606 0.028* 

20 min 0.060 0.860 

Vastus Lateralis 5 min 0.182 0.441 

10 min -0.074 0.758 

15 min 0.239 0.310 

20 min 0.304 0.205 

Gastrocnemius 

Medialis 

5 min -0.277 0.250 

10 min 0.503 0.028* 

15 min 0.519 0.027* 

20 min -0.445 0.064 

5 min -0.3 0.904 
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Gastrocnemius 

Lateralis 

10 min -0.159 0.502 

15 min 0.127 0.615 

20 min -0.491 0.045* 

Statistically significant correlations between CV% of peak amplitude and TimeTT were seen at 15 

minutes for the Vastus Medialis, 10 and 15 minutes for the Gastrocnemius Lateralis and 20 minutes 

for the Gastrocnemius Medialis. All other correlations were found to be not statistically significant. 

Variability of median frequency of muscular activation 

When considering the mean variability of median frequency across all muscles there was an increase 

from 5 - 10 minutes (CV% = 30.14 ± 14.58 – 31.40 ± 11.88), another increase from 10 – 15 minutes 

(31.40 ± 11.88 – 32.13 ± 15.01) and then a decrease from 15 – 20 minutes (32.13 ± 15.01 – 29.86 ± 

10.28). None of these differences were statistically significant (p>0.05).  

Data was then separated to investigate each muscle individually. Comparisons can be seen in table 

10-4. 

Table 6-4. CV% of median frequency of muscular activation. 

 CV% at 5 

mins 

(mean ± 

SD) 

CV% at 

10 mins 

(mean ± 

SD) 

CV% at 

15 mins 

(mean ± 

SD) 

CV% at 

20 mins 

(mean ± 

SD) 

Vastus Medialis 28.40 ± 

13.65 

 

29.76 ± 

13.15 

 

29.69 ± 

12.80 

 

27.92 ± 

10.78 

 

Vastus Lateralis 27.79 ± 

12.24 

 

30.17 ± 

10.82 

 

30.95 ± 

11.97 

 

27.31 ± 

8.52 

 

Gastrocnemius 

Medialis 

29.11 ± 

11.20 

 

30.95 ± 

9.92 

 

34.75 ± 

19.18 

 

34.14 ± 

12.74 

 

Gastrocnemius 

Lateralis 

35.00 ± 

19.88 

 

34.55 ± 

14.60 

 

32.33 ± 

15.67 

 

29.85 ± 

8.61 
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No statistically significant differences were seen across these comparisons, suggesting no significant 

difference in the variability of median frequency of muscular activation was shown in any muscle 

across the duration of the time trial efforts (p>0.05).  

To investigate the influence of expertise, levels of variability of median frequency were then 

correlated against the time taken to successfully complete the time trial (TimeTT). Results can be 

seen in Table 10-5 with statistically significant (p<0.05) correlations denoted by an asterisk (*). 

Table 6-5. Variability of median frequency correlated against the time taken to successfully 

complete the time trial (TimeTT). 

 Time point Correlation  

co-efficient 

Sig. 

Vastus Medialis 5 min 0.256 0.422 

10 min 0.064 0.851 

15 min 0.083 0.821 

20 min 0.059 0.88 

Vastus Lateralis 5 min 0.021 0.93 

10 min -0.345 0.137 

15 min 0.457 0.043* 

20 min 0.136 0.568 

Gastrocnemius 

Medialis 

5 min 0.254 0.295 

10 min 0.634 0.005* 

15 min 0.039 0.882 

20 min 0.217 0.419 

Gastrocnemius 

Lateralis 

5 min 0.669 0.002* 

10 min 0.312 0.239 

15 min -0.207 0.442 

20 min -0.06 0.831 

 

Statistically significant correlations between CV% of median frequency and TimeTT were seen at 15 

minutes for the Vastus Lateralis, 10 minutes for the Gastrocnemius Medialis and 5 minutes for the 

Gastrocnemius Lateralis. All other correlations were found to be not statistically significant (p>0.05). 

6.4 Discussion 

The results presented above show little evidence for an established relationship between the level of 

intra-individual movement variability employed by participants and the time taken to complete an 

indoor simulated time trial performed on a cycle ergometer. This is at odds with the stated 
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hypothesis which suggested that, if intra-individual variability plays a functional role in the 

completion of a simulated indoor time trial event, those who completed the time trial quickest 

should also be adopting the most variable patterns of muscular recruitment. 

Peak Amplitude of Muscular Activation 

As demonstrated in Figure 10-2, with all participants grouped together, there were no statistically 

significant differences (p>0.05) in the peak amplitude of muscular activation across the four 

measured time points. There is some debate within the published literature as to the expected 

results for this variable with some authors (eg. Petrofsky, 1979; Housh et al., 2000 and Saunders et 

al., 2000) reporting significant increases in muscular activation while working at relatively high 

intensities (80 - 95% of peak power output or 60 - 100% of V̇O2 max) and others (eg. Lucia, Hoyos and 

Chicharro, 2000 and Duc, Betik and Grappe, 2005) showing no statistically significant differences 

over time.   

This difference in findings may potentially be attributed to the difference in sample populations 

utilised for the studies mentioned above. Those authors who reported significant differences in 

muscular activation have done so after testing untrained cyclists while Lucia, Hoyos and Chicharro 

(2000) recruited nine professional road cyclists and Duc, Betik and Grappe (2005) studied 

participants with a between 2 and 11 years of competitive experience. The participant group of the 

current study were similarly experienced, all holding a current British Cycling Race License and self-

reporting their training load as 10.85 ± 4.21 hours or 156.00 ± 48.35 miles per week. The tested of 

V̇O2 max capacities of the current sample (73.2 ± 12.2 ml/ml/kg) also compare very favourably with 

the studies of Lucia, Hoyos and Chicarro (2000) and Duc, Betik and Grappe (2005) who reported 

mean values of 72.6 ± 2.2 ml/kg/min and 73.8 ± 5.3 ml/kg/min respectively.  

In addition, it is worth considering that the reported values from this study were recorded over a 

ten-mile simulated time trial effort which was completed in an average of 23 min 30s (± 2 min 21s). 

This makes it far more logical to compare results against those produced during a 20 minute test 

performed at 80% of V̇O2 max (Lucia, Hoyos and Chicarro, 2000) or an “all out” 30 minute time trial 

exercise on a cycle ergometer (Duc, Betik and Grappe, 2005) than those produced during two 15-

minute bouts (Saunders et al., 2000), four 15-minute bouts (Housh et al., 2000) or measures taken at 

very low intensities (20 and 40% of V̇O2 max) over a duration of 80 minutes (Petrofsky, 1979).  

As such, it can be said that the lack of statistically significant differences in muscular activation 

across time points was expected for a participant group of this nature. This is not to say that changes 

in muscular activation did not occur, as Dorel at al. (2009) showed significant increases in the 
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activation of the Biceps Femoris and Gluteus maximus in the final stages of a test to exhaustion. 

These muscles, however, were not part of the current investigation. 

 

Median Frequency of muscular activation 

Throughout the time trial effort, due to the well-established belief that that muscle fibre conduction 

velocity decreases during a fatiguing exercise (De Luca, 1984) and that muscles will display negative 

trends of spectral variables (Merletti, Knaflitz and De Luca, 1990), it was expected that a reduction in 

median frequency of muscular activation would be seen. This holds true, to some degree as there 

was a statistically significant (p<0.05) reduction in median frequency of activation for the Vastus 

Medialis and Medial head of the Gastrocnemius between ten and fifteen minutes and again 

between fifteen and twenty minutes. There was also a significant reduction in median frequency of 

activation for the Lateral head of the Gastrocnemius between ten and fifteen minutes. These 

findings conflict with those of Duc, Betik and Grappe (2005) who reported a significant increase in 

MPF (Mean power frequency) in the Vastus Medialis from five to ten minutes and another in the 

final stages of their test. 

It is interesting that no such corresponding reduction in median frequency was seen in the Vastus 

Lateralis, especially considering that Ryan and Gregor (1992) identified it as one of the primary 

power producers in the cycling movement. It is possible, however, that reporting median frequency 

for a whole revolution is not sensitive enough to show the changes that may be present as Von 

Tscharner (2002) showed that the reduction of the frequency of activation is specific to only certain 

periods during the crank revolution. The findings of this investigation do, however, concur with 

Lucia, Hoyos and Chicarro (2000) who reported that, during their investigation, MPF remained 

almost constant throughout the tests. They suggested that, as they had not seen a decline in 

frequency and a corresponding increase in amplitude of muscular activation, there was no evidence 

of neuromuscular fatigue in their participants.  

Citing their previous research which had established that EMG variables from the Vastus Lateralis of 

professional cyclists and are valid indicators of neuromuscular fatigue in these subjects, Lucia, Hoyos 

and Chicarro (2000) concluded that cyclists of this level must have “a considerable resistance to 

fatigue of recruited motor units” and that “such adaptation is probably attained after years of highly 

demanding training”.  

Although it is possible that the Vastus Lateralis of highly trained cyclists is resistant to fatigue, it is 

also possible that, as suggested by Tucker, Rauch, Harley and Noakes (2004) and Bini and Carpes 
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(2014), cyclists subconsciously manage muscle activation in order to postpone exhaustion during 

time trial events. This may be achieved by employing a level of variability as invariant movement 

patterns would result in the employment of the same muscle fibres repeatedly (Heiderscheit, Hamill 

and van Emmerik, 2002). Consequently, a great amount of cumulative stress would be placed on the 

tissues involved and thus heightened fatigue would be a logical outcome. Movement variability may 

be a preventative method used to distribute this load upon a wider range of tissues (Bartlett, Wheat 

and Robins, 2007; James, Dufek and Bates, 2000) and is therefore the focus of the rest of this 

discussion. 

Variability of peak amplitude of muscular activation 

If all muscles and all participants are taken into account, there appears to be a trend for increased 

variability of peak amplitude from five to ten minutes (CV% = 12.10 ± 1.92 – 14.30 ± 4.54), another 

increase from ten to fifteen minutes (14.30 ± 4.54 – 16.40 ± 5.86) and then a decrease in variability 

at the 20 minute measurement (16.40 ± 5.86 – 14.58 ± 2.59). Although none of these differences 

were found to be statistically significant (p>0.05) it does suggest that there is a pattern of increasing 

variability of muscular activation throughout the mid stages of the time trial, potentially in an effort 

to reduce the influence of fatigue. This would be in line with the findings of Gates and Dingwell 

(2011) and Yang et al. (2018) who both found that variability increased with fatigue during repeated 

task performance, but movement timing errors and endpoint spatial variability were mostly 

preserved. It should be acknowledged that both these papers produced their findings while studying 

repeated upper body tasks and therefore lack some relevance here but, nonetheless it does appear 

to show previous evidence of increased variability in response to fatigue.  

To further investigate the variability of peak muscular activation, the data was reduced to study each 

muscle individually. There were no statistically significant differences found between time points 

(p>0.05) for any of the muscles studied but, again, the trends would suggest a gradual increase in 

both quadriceps muscles (VM and VL) over time with both heads of the gastrocnemius showing an 

increase in variability up until the 15 minute measure followed by a reduction at the final 

measurement.  

The lack of significant differences across time points was, perhaps, expected, given that Ryan and 

Gregor (1992) reported “very consistent” patterns of activity within a single cycling trial. Specifically, 

they reported that the Vastus medialis and Vastus lateralis showed CV% values of less than 30% and 

that this supported their role as power generators. As seen in table 10-2. the highest CV% for these 
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muscles falls well within the previous findings with a peak value of 16.95 ± 5.13 being recorded for 

the Vastus Medialis at 20 minutes.  

In order to answer the main question of this study, however, testing in this way is not ideal as it is 

possible that using mean values obtained from all participant’s data combined may be masking the 

influence of rider expertise. Interestingly, as seen in Figure 10-4, if the participants are grouped 

according to overall finishing time for the time trial, the fastest five riders display peak variability at 

10 minutes (15.43 CV%) and then only show a slight reduction across the remaining time points. In 

contrast, the slower five riders do not peak until the 15-minute measure, show a higher level of peak 

variability (17.96 CV%) and a greater reduction after this point which resulted in lower variability 

than the fastest 5 riders by the time the final measure was taken.   

 

Figure 6-4. Trends of changing Continuous Relative Phase values across the course of a simulated 

time trial effort. 

In order to quantify the effect of expertise, the decision was taken to test for a relationship between 

the level of variation and the overall time taken to complete the time trial (TimeTT). This showed 

there was a statistically significant correlation between CV% of muscular activation and TimeTT at 15 

minutes for the Vastus Medialis, 10 and 15 minutes for the Gastrocnemius Lateralis and 20 minutes 

for the Gastrocnemius Medialis. Using the guidelines from Koo and Li (2016), for the VM and GM 

these correlations were interpreted as moderately positive (r = 0.606, 0.503 and 0.519 respectively) 

with the GL, in contrast, showing a negative correlation (r = -0.491) which very nearly meets the 

criteria for a moderate correlation in the opposite direction. 
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Such contrasting results are very difficult to explain, especially concerning the presence of two 

opposing correlations within the same muscle complex. Viewed in isolation, the opposing 

correlations shown within the gastrocnemius could suggest that differing levels of athlete employ 

different movement strategies in order to produce the pedalling action. This, however, would 

contrast with findings from Hug, Bendahan, Le Fur, Cozzone and Grelot (2004) who suggested that 

there was no consistent pattern of activation within experienced cyclists and Hug, Turpun, Guevel 

and Dorel (2010) who identified at least three differing patterns of muscular activation within 

trained cyclists and concluded that this “does not represent differences in the overall locomotor 

strategy for pedalling”. 

It is worth noting that the studies mentioned here, in addition to Hug et al. (2008) are all focussed on 

inter-individual variability and therefore do not offer a true comparison for this investigation. They 

also offer no grounding to explain why there appears to be significant correlations between 

variability of muscular activation and overall time taken to complete the time trial at some time 

points and not at others, even within the same muscle. 

Variability of median frequency of muscular activation 

As with the recorded levels of variation within the peak amplitude of muscular activation, the mean 

variability of median frequency of muscular activation generally follows a trend of increasing from 

five to 10 minutes (CV% = 30.14 ± 14.58 – 31.40 ± 11.88), increasing again from ten to fifteen 

minutes (31.40 ± 11.88 – 32.13 ± 15.01) and then decreasing from fifteen to twenty minutes (32.13 ± 

15.01 – 29.86 ± 10.28). 

Again, none of these differences were considered statistically significant (p>0.05) but the presence 

of a similar pattern across both amplitude and frequency variables suggests that there is some level 

of compensation or control at play here which is common to both. As previously mentioned, this 

could be similar to the findings of Gates and Dingwell (2011) and Yang et al. (2018) and the decrease 

between the fifteen and twenty minute measurements points could be indicative of fatigue 

overcoming theses compensatory mechanisms. It is worth noting that there was a relatively linear 

increase in mean RPE values recorded across the time trial efforts with no obvious point at which 

participants perceived their workload to dramatically increase. This would suggest that the reduction 

in variability seen towards the later stages of the effort are entirely subconscious as suggested by 

Tucker, Rauch, Harley and Noakes (2004) and Bini and Carpes (2014).  

Once more, the correlation of CV% against TimeTT showed little in the way of statistically significant 

relationships. The only statistically significant correlations (p<0.05) were seen at 5 minutes for the 
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lateral head of the Gastrocnemius (r = 0.669), 10 minutes for the Medial head of the Gastrocnemius 

(r =0.634), and 15 minutes for the Vastus Lateralis (r = 0.457). That there should only be statistically 

significant correlations at one time point for each muscle (3 significant results out of 16 

correlations), and that this is a different time point for each muscle is unexpected. Combining this 

with the fact that all observed correlations here were positive in contrast to the amplitude variable 

which had a mix of positive and negative makes the results shown here all the harder to explain. 

Summary and limitations 

The general lack of statistically significant correlations between recorded variability of muscular 

activation and TimeTT shows little evidence for an established relationship between the level of intra-

individual movement variability employed by participants and the performance outcome during 

indoor simulated time trials performed on a cycle ergometer.  

There are, however, some limitations present within the current investigation which may go some 

way to explaining why elevated levels of variability were not seen in “better” riders as expected.  

Firstly, it is worth noting that there were some data points which could potentially seem erroneous. 

For example, levels of peak amplitude variability within the Gastrocnemius Lateralis generally range 

between 8 and 20%, depending on participant and timepoint. Participant 2, however was recorded 

as having 124.42% variability at the 15-minute measure for this muscle. Although large inter-

individual differences have been shown previously (Hug et al 2004; 2008; Chapman et al., 2007), this 

magnitude of difference does seem to suggest an error in the measurement which may have 

artificially masked the true correlation as this is a very high CV% value and the participant’s finishing 

time ranked 9th out of 10.  

This also highlights a potential weakness in the approach taken to correlate variability against 

finishing time. As with Study 1, expertise was originally to be inferred by grouping participants 

according to the different categories they were competing at within the established competitive 

structure set out by British Cycling. It quickly became evident that this was not appropriate (see 

Study 1 and Section 3.2.4) as, for example, grouping the 4th category riders together would have 

created a group which included the 2nd, 4th, 7th, 8th and 10th ranked riders in terms of finishing 

time.  

When considering the processes of data analysis, it is also possible that the ten-revolution window 

used for this investigation does not accurately reflect the true variability being displayed by the 

participants. Given the exploratory work displayed in section 3.3.4 and the previous studies who 

have also employed this method (e.g. Dorel et al., 2010; Chapman et al., 2008, Carpes et al., 2011; 
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Sides and Wilson, 2012) we are reasonably convinced this is not the case, but it is nonetheless worth 

acknowledging. 

In addition, a small number of previous studies (eg. Von Tscharner, 2002 and Farina et al. 2004) have 

reported variability in terms of muscle coordination changes at specific points throughout the pedal 

revolution and found that there are significant reductions in the frequency of activation at some 

points but not others. Testing only the peak amplitude and median frequency values for each full 

revolution may, therefore, have reduced the level of detail present in the data to a point where 

changes that were present have been missed. Unfortunately, with the equipment available at the 

time that data collection was performed, it was not possible to synchronise multiple systems to 

accurately attribute muscular actions to specific phases of the pedal revolution. 

Finally, and perhaps most importantly, the decision to design a study which was very controlled in 

nature may go some way to explaining the results displayed here. As mentioned previously, there is 

growing support for the notion that intra-individual movement variability may perform a functional 

role in task performance (Van Emmerik, Hamill, and McDermott, 2005), especially when the task 

requires adaptability of complex motor patterns within dynamic performance environments (Button, 

Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006). By choosing to use a cycle ergometer in 

a laboratory setting it is possible that the dynamic element of the performance environment has 

been controlled to such a degree that there isn’t enough demand placed on the system in order to 

require a variable response. That is to say, removing the task perturbations such as variations of 

road surface, weather conditions, incline etc. may have unintentionally limited the amount of intra-

individual movement variability the cyclists need to exhibit in order to complete the task. As a result, 

this study may not give a true representation of the functional role intra-individual movement 

variability can play and a more ecologically valid setting should be sought for future investigations. 

6.5 Conclusion 

The results presented here show little evidence for an established relationship between the level of 

intra-individual movement variability employed by participants and the performance outcome 

during indoor simulated time trials performed on a cycle ergometer.  

The presence of some statistically significant relationships and concerns about the ecological validity 

of the testing environment does, however, suggest there is merit to continuing this investigation 

further. It is recommended that future research should aim to investigate the intra-individual 

movement variability employed by cyclists of differing levels during outdoor cycling in order to 
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represent the actions of riders more accurately in a “real world” scenario which may, in turn, elicit a 

more variable response. 
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7. OVERALL DISCUSSION 

The aim of this chapter is to summarise the work contained within this thesis in order to highlight 

the major findings and consistent themes running throughout. There will be a discussion of the 

implications and impact that this work may have and, following an acknowledgment of the 

limitations of this work, directions for future investigations will also be suggested. 

7.1 Summary 

This thesis has presented a number of investigations into the potentially functional role that intra-

individual movement variability may play within cycling.  

Movement variability is a feature of human movement which has historically been dismissed as 

merely “noise” (Bartlett, Wheat and Robins, 2007) or viewed as detrimental to normal function 

(Araújo and Bartlett, 2003; Sides and Wilson, 2012; Padulo et al., 2022) due to the implicit 

assumption that movement patterns for skilled performers are invariant. This thesis, however, 

hypothesised that variability in movement systems should be considered to be an essential element 

of normal, healthy function and is aligned with those authors who suggest that it may help 

individuals to adapt to the changing constraints encountered during a given task (e.g. Button, Davids 

and Schöellhorn, 2006; Bradshaw and Aisbett, 2006; Bradshaw et al., 2007).  

In order to investigate this hypothesis, a quantitative, empirical approach was taken, initially 

focussing on kinematic measures of movement variability. The series of experimental investigations 

presented here generally progress from highly controlled, laboratory-based experiments, through a 

number of validation exercises, to measurements of cycling performance in more ecologically valid, 

field-testing settings.  

A lack of significant findings in early investigations (Study 1) was generally attributed to a lack of task 

perturbations in the laboratory setting. That is to say, replicating a time trial effort in a laboratory 

setting meant that the dynamic elements of the performance environment were controlled to such a 

degree that there wasn’t enough demand placed on the system in order to require a variable 

response. This led to the requirement for validation of various mobile measurement devices (Studies 

2 to 5) in order that confidence could be placed in these devices when investigations moved to a 

more ecologically valid setting. 

Having established a valid method of collecting kinematic data without using the traditional motion 

capture systems (Study 5), investigations moved to a field-based mode of data collection (Study 6). 

Here it became apparent that there was a statistically significant relationship between the amount 

of variability displayed by a cyclist and the time taken to complete a ten-mile time trial on a 
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standardised course. This relationship was apparent at both the Hip-Knee joint and Knee-Ankle joint 

angle couplings and suggests that more highly skilled cyclists were employing greater levels of intra-

individual movement variability than their less skilled counterparts.  

In order to better understand the underlying mechanisms that led to this increased level of 

movement variability, investigations then returned to the controlled setting of the laboratory to 

investigate muscular recruitment patterns during time trial performance (Study 7). This study 

showed limited evidence for an established relationship between the level of intra-individual 

movement variability employed by participants and the time taken to complete an indoor simulated 

time trial on a cycle ergometer. As with the indoor kinematics investigation (Study 1), this was 

largely attributed to a lack of task perturbations in the laboratory setting and, despite some 

methodological imitations, Study 7 provides a good grounding for post-doctoral work in a field-based 

setting which might better replicate the “real world”.  

 

7.2 Implications and applications 

In contrast to the traditional view that movement variability is detrimental to performance (Padulo 

et al., 2022; Davids, Glazier, Araújo and Bartlett, 2003; Van Emmerick and Van Wegen, 2000), this 

thesis has presented evidence that cyclists can benefit from employing a level of intra-individual 

movement variability which leads to a number of possible applications.  

Firstly, these findings can be used to influence coaching practice and training programme 

composition. Rather than emphasising the development of a single “correct” pedalling technique, 

these findings suggest that it may be more appropriate to construct training programmes and 

coaching drills which expose cyclists to a variety of conditions, settings and environmental factors. 

This would allow cyclists to gain experience practicing the process of dynamically producing a 

suitable movement pattern to match each novel combination of task constraints and therefore solve 

the degrees of freedom problem more efficiently (Bernstein, 1967). Such an approach has already 

been proposed in other sports where Knight (2004) suggested that golfers may be able to develop a 

more reliable swing by exploring different movement patterns, rather than attempting to perform 

each swing with absolute invarience and Bradshaw, Maulder and Keogh (2007) stated that it could 

be more beneficial to place athletes in a multitude of scenarios which offer a multitude of different 

task demands. A longitudinal applied study with an intervention along these lines would be an 

interesting avenue of investigation for future work. 
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The second potential application of the findings within this thesis is in the area of injury 

reduction/avoidance. If cyclists adopt invariant movement patterns, this would result in the 

utilisation of the same muscle fibres repeatedly (Heiderscheit, Hamill and van Emmerik, 2002). This 

would place a great amount of cumulative stress on the tissues involved and, given that fatigue is 

unavoidable in a cycling time trial due to the intensity of performance (Kenefick et al., 2002), could 

lead to injuries from overuse. If, instead, cyclists are trained to exhibit a higher degree of movement 

variability, Kurz, Sterigou, Buzzi and Georgoulis (2005) and Christiansen, Bradshaw and Wilson (2008) 

both suggested that this may play a functional role in reducing injury as it reduces the repetitive 

stress on the individual joints by facilitating variable loading of the musculoskeletal features of the 

joint. Thus, developing a level of intra-individual movement variability may serve as a preventative 

method used to distribute the workload across a wider range of tissues (Bartlett, Wheat and Robins, 

2007; James, Dufek and Bates, 2000).  

It is fair to say that the investigations contained within this thesis have shown limited evidence that 

movement variability can help to mitigate the effects of fatigue but, should further investigations 

prove this to be the case it would be of interest to cyclists across the participation spectrum. For 

those cycling at the competitive end of the sport, a reduction in the occurrence of fatigue should 

result in greater competitive performance and a more predictable adherence to training structures. 

For those engaging in cycling as a low impact mode of physical activity, and any associated exercise 

professionals, this would also suggest a level of confidence when trying to increase levels of activity 

as this can be done without concerns about variable movement patterns causing injuries. 

7.3 Limitations 

There are, as with all research, some persistent limitations which run throughout the work 

presented in this thesis. Given the impact of the global COVID-19 pandemic (see Section i) some of 

these were unavoidable but, nevertheless, will be discussed here.   

Throughout the thesis, the kinematic investigations (Studies 1 to 6) have only explored 

flexion/extension couplings in the sagittal plane. Although this is typical of most kinematic analysis 

of cycling (Ferrer-Roca, Roig, Galilea and Garcia-Lopez, 2012; Carpes et al., 2006), it is possible that 

participants may exhibit movement variability in other planes in order to alter their technique from 

one pedal revolution to the next. The range of motion involved in these adjustments is unlikely to be 

in the order of magnitude seen in the sagittal plane at the hip (42–44°), Knee (73-78°) and ankle 

joints (21-25°) (Bini, Senger, Laferdini and Lopes, 2012), but nevertheless it is an area which would 

be recommended for investigation in future.  
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Likewise, the environmental perturbations explored in the outdoor investigation (Study 6) are 

limited to variations of gradient. Given the range of potential perturbations which could play a role 

in eliciting a variable response, especially when the task is being performed in a dynamic 

performance environment (Button, Davids and Schöellhorn, 2006; Bradshaw and Aisbett, 2006), this 

is an aspect of the investigation which could be expanded in the future. 

One consistent challenge throughout the thesis has been deciding how to suitably quantify the level 

of accomplishment shown by participants and effectively group them according to “skill level”. These 

challenges were outlined in section 3.2.4 and have been addressed by using a global outcome 

measure (i.e. the time taken to complete the time trial) as an analogue for skill level. Although this 

approach appears logical as it is this outcome measure which would ultimately decide finishing 

positions in a competitive event, it could be argued that there are a range of factors other than skill 

level which may lead to a faster time. Additionally, it is somewhat of a gross measurement given the 

level of detail involved in the analyses presented here. 

Had it been feasible to recruit greater numbers of participants, it may have been possible to 

investigate other grouping methods and more tightly control the physiological variation between 

participants. Unfortunately, as explained in Section i, this was not the case and, should these 

investigations be extended in the future, this is certainly an area where improved rigor could be 

seen.   

7.4 Future investigations 

Aside from the limitations outlined above, there are some additional recommendations to be made 

for future investigations.  

The kinematic data which comprises the majority of this thesis can be viewed as somewhat of a 

middle stage in terms of the motor control process. That is to say, the kinematic variability displayed 

here must, logically, be a result of underlying variance in the recruitment patterns and/or co-

ordination of the musculature which is involved in creating the motion. In turn, the kinematic 

movement variability may manifest in greater variation of kinetic outcome measures, such as power 

output at the pedals, and other factors which may contribute to the overall time taken to complete a 

cycling event.  

It is fair to say that this thesis has made initial inroads into investigations in these areas, but that 

they warrant further attention in the future. For example, by returning to the controlled setting of 

the laboratory to investigate muscular recruitment patterns during time trial performance (Study 7), 

this thesis offers an insight into some of the muscular mechanisms at play but these investigations, 
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like the kinematic investigations before, now needs transporting into a more ecologically valid 

testing environment to reflect “real world” performance. 

Likewise, having validated PowerTap’s P1 pedals for use during this thesis (Study 2), it is somewhat 

frustrating to not be able to present kinetic pedal data in consort with the kinematic data for the 

outdoor study. A number of the participants recruited for the final kinematic study (Study 6) were 

either reluctant to have their pedals changed, preferring to use their established clipless 

configuration, or were not comfortable riding with clipless pedals. This resulted in such a small 

dataset that there was no meaningful way of presenting kinetic data and, again, is an area which 

should be addressed in future investigations. 

Finally, this thesis has been intentionally limited in terms of the cycling events studied. The selection 

of a time trial ensures the most controlled event where the cyclist performs in isolation from any 

others and has the sole aim of completing the prescribed distance in the shortest time possible. 

From a dynamical systems perspective this removes a number of potentially perturbating factors 

but, in doing so, it allows a more manageable investigation to be run. Time trials, however, 

represent a very small proportion of the competitive events available within the cycling calendar and 

therefore limits the understanding of the movement variability in a wider context. Many other road 

cycling events are more complex in terms of the task perturbations a cyclist may experience (for 

example the interactions between riders within a road race peloton or sprint event or the influence 

of team tactics in a multi-stage grand tour event) and this is before other disciplines of cycle sport 

are considered such as BMX, off road cycling or even the multi-sport demands of a triathlon. All of 

these events offer opportunity for further investigation and a growth of understanding in terms of 

the functional role of intra-individual movement variability in cycling. As such, it is fair to say that 

this thesis has only scratched the surface of an area which presents great opportunity for further 

investigation. 

7.5 Conclusion 

The complexities of cycling and cycling literature are numerous but this thesis presents evidence 

that, contrary to the historical assumption, intra-individual movement variability may play a 

functional role within the performance of cycling time trial events. There is a suggestion here that 

skilled performers employ a greater level of kinematic movement variability than their less skilled 

counterparts and that this relates to higher performance levels as reflected by the faster completion 

of time trial events. Future studies should continue to investigate both the origin and implications of 

such movement variability through the medium of in-depth quantitative studies using a combination 
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of electromyographic and kinetics focussed datasets alongside the kinematic measurement 

techniques demonstrated throughout this thesis. 

Such studies should, wherever possible, replicate “real world” performance conditions and 

ultimately progress beyond the limits of time trial performance into the full range of cycling activities 

available across multiples bicycle types and disciplines. 
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Abstract: The use of mobile power measuring devices has become widespread within cycling, with 

a number of manufacturers now offering power measuring pedals. This study aimed to investigate 

the validity of PowerTap P1 pedals by comparing them with the previously validated Wattbike 

ergometer. Ten trained cyclists performed three simulated 10-mile (16-km) time trials on a 

Wattbike, 

while using PowerTap P1 pedals. There were no statistically significant differences (p > 0.05) 

between PowerTap P1 pedals and a Wattbike for maximum, minimum, and mean power output, or 

for maximum, minimum, and mean cadence. There were good to excellent levels of agreement 

between the PowerTap P1 pedals and Wattbike (ICC > 0.8) for all measured variables except 

minimum cadence 

(ICC = 0.619). This suggests that PowerTap P1 pedals provide a valid measurement of power 

output. 

Keywords: power output; cadence; power meter; mobile dynamometer 

 

1. Introduction 

Laboratory-based testing must be conducted upon the assumption of accurate and reliable data 

collection. To this end, a number of cycle ergometers have been validated for use within laboratory 
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settings, including the Wattbike (Wattbike Ltd., Nottingham, UK), which has been shown to be both 

valid and reliable across a range of testing protocols. 

For trained cyclist populations, the Wattbike has been reported to have a coefficient of variation 

(CV) of 2.6% [1] and to afford “highly reproducible” results during 30-s sprint and 4-min 

performance test protocols [2]. In addition, the Wattbike demonstrates high levels of intra-day and 

inter-day reliability [2] and no significant difference between measures of power output recorded in 

test–retest conditions [3]. As such, the Wattbike is considered to be an accurate and reliable tool for 

training and performance assessments, but there is a growing acknowledgement that laboratory-

based research may not possess adequate levels of ecological validity [4–11]. 

Researchers have reported differences of up to 8% between indoor cycling performance and an 

equivalent outdoor event [8–11]. This would suggest that, despite the validity of the Wattbike, 

laboratory protocols do not accurately replicate “real-world” performance. As such, it has become 

increasingly important to be able to measure power output during outdoor cycling events using a 

range of devices designed to be fitted to the athlete’s own bicycle rather than relying only on 

laboratory-based measures. 

The Schoberer Rad Messtechnik (SRM) device, which consists of a number of rotational strain 

gauges housed between the crank spindle and chain ring interface, has become the “gold standard” 

device for mobile power measurement applications due to its high validity and reliability [12–15] 

and the ability to collect valid and reliable data during actual sporting performance while using the 

cyclist’s bicycle. This is not to say that it is without limitations as the SRM device remains 

prohibitively expensive for most recreational-level participants and there are also potential 

compatibility issues due to the wide range of bottom bracket standards currently employed by 

bicycle manufacturers. In addition, the device itself requires a certain level of mechanical 

competency to install correctly and requires manufacturer-based servicing for battery replacements 

[16]. These issues, along with the suggestion that when using this style of device there may be 

potential distortion of the crank arms, which would lead to systematic error in torque measurement 

[17], have led to the development of alternative mobile power measurement devices. 

One example of this is power measuring pedals, such as Garmin Vector pedals (Garmin, 

Schaffhausen, Switzerland), which, instead of containing strain gauges in the crank arms, house 

them within each pedal body. Not only does this allow power measurement to be differentiated 

between right and left—something that is only possible with additional computation modules when 

using the SRM device—it also removes the potential influence of crank distortion. In addition, 

pedals-based devices are almost universally compatible, regardless of the individual bicycle 
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componentry, which affords the potential to transfer between bicycles, with limited mechanical 

experience required for installation or maintenance. 

Garmin Vector pedals have been compared with the SRM device and have been shown to report 

non-statistically significant differences in power output [16] and to give reproducible results across a 

range of power outputs and various cycling efforts, such as sub-maximal incremental tests, sub-

maximal 30-min continuous tests and sprint tests [18]. It has been noted, however, that they 

increasingly overestimate at higher power outputs, whilst underestimating during sprints with a low 

gear ratio and during a 2-h road cycling session on hilly terrain [18]. This would suggest that data 

from Garmin Vector pedals should be treated with some caution. 

One, largely unresearched, alternative to the Garmin Vector pedals is the P1 pedals system by 

PowerTap (Madison, WI, USA). The PowerTap P1 pedals have four pairs of strain gauges per pedal to 

measure applied force at the pedal body in both the vertical and horizontal planes and Hall effect 

sensors attached to the pedal axle, which results in a claimed 40 measurement points per pedal 

stroke [19]. In addition, the PowerTap P1 pedals have a temperature sensor at the point of force 

measurement. This allows for automatic accommodation for changes in temperature in an effort to 

avoid measurement error due to changes in environmental conditions during data collection and is 

something which, to the best of the authors’ knowledge, is not present in any of the other devices 

mentioned here. 

Despite the popularity of power measuring pedals and the number of papers examining the validity 

of the Garmin Vector pedals, there has been little published on the validity of the PowerTap P1 

pedals with, to the authors’ knowledge, only one study comparing PowerTap P1 pedals with the 

SRM device [20]. These researchers evaluated the pedals during both sub-maximal incremental test 

and sprint test protocols in a small (n = 5) experimental cohort. Though such protocols can provide 

valuable insight, it has been observed that ”constant work” or “time trial” type tests, where the 

cyclist is required to complete a set distance in the shortest time possible, provide more appropriate 

simulations of the bioenergetics of most competitive events lasting several minutes or more [21]. 

The aim of this study, therefore, was to assess the validity of the PowerTap P1 pedals by comparing 

them with the previously validated Wattbike cycle ergometer during self-paced, simulated time 

trials. 
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2. Materials and Methods 

2.1. Participants 

Ten trained cyclists (9 male, 1 female) (mean ± standard deviation (SD): 31 ± 10 years; 1.80 ± 0.10 m; 

72 ± 9 kg, maximum power output 366 ± 69 W) volunteered to take part in the study. All cyclists 

held a current British Cycling Race Licence and maintained their normal diet and daily activity 

patterns throughout the test period. All participants gave written informed consent before taking 

part in the study, which had local ethics committee approval. 

2.2. Procedure 

Participants visited the laboratory on 3 separate occasions, separated by a minimum of 48 h to 

allow full recovery from the previous trial. Each visit consisted of a self-directed warm up followed 

by a simulated 10-mile (16-km) time trial and self-directed cool down. Time trials were conducted 

from a standing start and participants were given free choice of gearing and cadence throughout. 

All trials were conducted in an air-conditioned laboratory using a standard Wattbike Pro cycle 

ergometer (Wattbike Ltd., Nottingham, UK), with PowerTap P1 pedals (CycleOps, Madison, WI, 

USA), 

which were zeroed before each ride, in line with manufacturer recommendations. Participants used 

their own cycling shoes and those who normally rode with cleats incompatible with the PowerTap 

pedals had their cleat position replicated with 3 bolt Kéo cleats (Look cycle international, Nevers, 

France). The ergometer was set to, as closely as possible, replicate the dimensions of each 

participant’s own bicycle. 

2.3. Data Analysis 

Power output and cadence were recorded for the duration of the time trials by a Garmin Edge 

1000 head unit (Garmin, Schaffhausen, Switzerland) and the ergometer’s display unit for the 

PowerTap pedals and Wattbike respectively. The Garmin data were then exported to third party 

open source analysis software, Golden Cheetah [22], and Wattbike data was analysed using 

Wattbike Expert software (Wattbike Ltd., Nottingham, UK), where it was displayed as a single value 

per second. 

Technical issues during some testing sessions meant that a small number of incomplete data 

sets were recorded by the Wattbike. Affected trials were removed from the study, which did not 

alter the number of participants tested but did result in only 20 of the 30 trials performed being 

analysed. 
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Mean, maximum, and minimum power outputs and mean, maximum, and minimum cadences were 

calculated, checked for normality and compared between equipment using paired samples T-tests. 

Effect sizes were calculated for these tests by calculating the mean difference between the two 

measures and then dividing the result by the pooled standard deviation. 

A Bland and Altman 95% limits of agreement (LoA) analysis quantified the agreement (bias and 

random error) between measurement equipment. In accordance with recommendations for 

carrying out LoA analysis [19,23], the data were checked for heteroscedasticity via a Levene’s test 

and LoA analysis was followed by intra-class correlation coefficients (ICC) via the two-way mixed 

model to quantify the consistency of the power and cadence measurements between PowerTap P1 

pedals and Wattbike. 

All statistical testing was performed using IBM SPSS statistics version 24 (IMB Corporation, New 

York, NY, USA), with a significance level set at p < 0.05. 

3. Results 

Levene’s test revealed a lack of heteroscedasticity (p > 0.05) and the results of paired samples 

T-tests showed no statistically significant differences between the PowerTap P1 pedals and the 

Wattbike in any of the measured variables: mean power output, minimum power output, maximum 

power output, mean cadence, minimum cadence or maximum cadence (p > 0.05). 

For the purpose of clarity, limits of agreement (LoA) results are reported in the format: Bias ± SD 

(upper confidence interval (CI), lower CI), where the bias represents the mean difference between 

the measurement methods and the lower and upper confidence intervals were calculated as Bias ± 

1.96 × SD. This is followed by a value for the intraclass correlation coefficient (ICC). 

Limits of Agreement analyses resulted in values of: 2.35 ± 18.3 W (CI: 33.5 and 38.2) and an ICC 

of 0.973 for mean power output (Figure 1a); −3.95 ± 41.8 W (CI: 86.0 and 78.1) and an ICC of 0.944 

for maximum power output (Figure 1b) and −18.65 ± 57.2 W (CI: 130.7 and 93.4) and an ICC of 0.816 

for minimum power output (Figure 1c). Cadence analysis showed 0.25 ± 3.8 rev·min−1 (CI: 7.2 and 

7.7) and an ICC of 0.864 for mean cadence (Figure 2a); 1.05 ± 2.6 rev·min−1 (CI: 4.1 and 6.2) and an 

ICC of 0.960 for maximum cadence (Figure 2b); and −1.00 ± 23.9 rev·min−1 (CI: 47.8 and 45.9) and an 

ICC of 0.619 for minimum cadence (Figure 2c). 
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 (a)  (b)  

  

(c)  

Figure 1. Bland-Altman plots for (a) mean power output (b) maximum power output and (c) minimum power 

output. Dashed lines represent the high and low 95% confidence intervals, the solid line shows the bias (the 

mean difference in power output reported between the two measurement methods). 

 

(a) (b)  

  

(c)  

Figure 2. Bland-Altman plots for (a) mean cadence (b) maximum cadence and (c) minimum cadence. Dashed 

lines represent the high and low 95% confidence intervals, the solid line shows the bias (the mean difference in 

cadence reported between the two measurement methods). 
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4. Discussion 

The aim of this study was to assess the validity of measurements by PowerTap P1 pedals during 

simulated time trial performances. Difference testing suggested no statistically significant 

differences between the PowerTap P1 pedals and the Wattbike ergometer for any of the recorded 

variables. 

The PowerTap P1 pedals underreported maximum power output values by 3.95 W, while 

overestimating mean power output values by 2.35 W in comparison to the previously validated 

Wattbike [1]. This represents a −0.94% difference for maximum power output and 0.88% difference 

for mean power output, both of which are lower than the −1.5% difference reported by Czajkowski 

et al. [20]. Although it is important to note that Czajkowski et al. [20] conducted both sub-maximal 

incremental test and sprint test protocols—in contrast to the simulated time trial used here—it 

would appear that there is a greater level of agreement between the Wattbike and PowerTap P1 

pedals investigated in the current study than was reported between the PowerTap P1 pedals and 

the SRM by Czajkowski et al. [20]. 

In contrast, the PowerTap P1 pedals appear to have underreported minimum power output by an 

average of 18.65 W, a 16.03% difference between the two measurement methods. Although this 

appears to be a large difference, it is statistically non-significant and this variable is likely to be of 

little interest to cyclists in the field. 

The levels of agreement shown in this study compare favourably with previously reported values 

[18] gathered during both submaximal incremental and continuous 30-min testing protocols to 

compare the data produced by Garmin Vector pedals and the SRM device. During incremental tests, 

non-significant differences in mean power output between devices were found [18], with LoA 

analysis highlighting a bias of 13.7 ± 12.4 W and 0.6 ± 6.2 W between the SRM and Stages systems 

and the SRM and Vector pedals, respectively. The 30-min continuous test more closely resembles 

the time trial effort evaluated in the current study and also produced no significant difference 

between the mean power outputs recorded. It was noted, however, that the Garmin Vector 

underestimated mean power output by 16.5% compared to the SRM. Given that a 0.88% difference 

for mean power output was recorded in the current study, it would appear that the PowerTap P1 

pedals agree more closely with the Wattbike than do Garmin Vector pedals with the SRM. 

Further support for the validity of the PowerTap P1 pedals is provided by consideration of ICC 

results. ICC values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 

are suggested to be indicative of poor, moderate, good, and excellent levels of agreement between 

measures, respectively [24]. As such, it can be suggested that there are excellent levels of 
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agreement between the PowerTap P1 pedals and the Wattbike for maximum cadence (0.960), 

maximum power output (0.944) and mean power output (0.973). These are followed by good 

reliability for mean cadence (0.864) and minimum power output (0.816) and moderate reliability for 

minimum cadence (0.619). 

The differences between systems seen in this study in terms of minimum power output may be the 

result of a lack of synchronisation at their point of measurement as the Powertap P1 pedals claim 40 

measurement points per pedal stroke [19], compared to two measurement points by the Wattbike 

[1]. Alternatively, the discrepancy may be the result of differences in how the two systems measure 

force. 

The Wattbike calculates force via the use of chain tension over a load cell, whereas the PowerTap P1 

pedals have four pairs of strain gauges per pedal to measure applied force at the pedal body in both 

the vertical and horizontal planes. Regardless of the reason for this variation in measurements, 

these results suggest that caution should be employed when investigating minimum power output 

values using the PowerTap P1 pedals, although the authors would repeat that this variable is likely 

to be of little interest to cyclists or researchers using the PowerTap P1 pedals in the future. 

It is acknowledged that the sample size for the current study (n = 10) could be viewed as a potential 

limitation. It is worth noting, however, that mean calculated effect sizes for this study were 0.11 for 

power output variables and 0.08 for cadence variables. With such small differences between 

measures it was calculated that 896 participants would be required for power output variables and 

1693 for cadence variables before the level of difference seen here became statistically significant at 

an alpha level of p < 0.05. 

In addition, although all participants were experienced cyclists who held a British cycling race 

licence, none were time trial specialists. This may have led to issues with pacing strategy and power 

production during the testing protocol as it has previously been shown that even competitive cyclists 

are not sensitive to the perceptual cues that inform their effort and ability to estimate how long it 

can be sustained [11]. In the current study this was not a significant concern due to the concurrent 

nature of the measurements. As such, the results described here would suggest that the PowerTap 

P1 pedals are a viable alternative to the SRM device for mobile power measurement applications. 

5. Conclusions 

There are no statistically significant differences between PowerTap P1 pedals and a Wattbike when 

measuring maximum, minimum, and mean power output or when measuring maximum, minimum, 

and mean cadence during a laboratory-based time trial. In addition, there are good to excellent 
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levels of agreement between the PowerTap P1 pedals and Wattbike (ICC > 0.8) for all variables 

except minimum cadence. This study suggests that PowerTap P1 pedals are valid for measurement 

applications within a laboratory setting but further investigation is needed during real cycling 

locomotion in the field to assess their usage in outdoor applications. 
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Abstract: The aim of this study was to assess the validity of electro-goniometers as a tool for recording continuous relative 

phase data at two joint couplings during cycling tasks at a range of cadences. Seven participants (4 male, 3 female, age: 29 

± 7 years, height: 1.76 ± 0.10 m, mass: 71.97 ± 11.57 kg) performed exercise bouts of 30 s at four prescribed cadences (60, 

80, 100, 120 rev·min−1) on a stationary ergometer (Wattbike, Nottingham, UK). Measures were synchronously recorded by 

bi-axial electro-goniometers (Biometrics, UK) and a 12-camera motion-capture system (Qualisys, Gothenburg, Sweden), with 

both systems sampling at 500 Hz. Sagittal plane joint angle and joint angular velocity were recorded at the hip, knee and 

ankle and analysed for ten complete pedal revolutions per participant per condition. Data were interpolated to 100 time 

points and used to calculate mean continuous relative phase (CRP) per pedal revolution at two intra-limb couplings: (i) knee 

flexion/extension– ankle plantarflexion/dorsiflexion (KA) and (ii) hip flexion/extension–knee flexion/extension (HK). At the 

KA coupling, significant differences in mean CRP were found between measurement systems at 120 rev·min−1 (p = 0.006). At 

the HK coupling, significant differences in mean CRP were found between measurement systems at 80 rev·min−1 (p = 0.043) 

and 100 rev·min−1 (p = 0.028). ICC values for most comparisons were below 0.5, suggesting poor levels of agreement between 
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systems. Significant differences in mean CRP per pedal revolution and poor levels of agreement between systems suggests 

that electro-goniometers are not a suitable alternative to motion-capture systems when attempting to record CRP during 

cycling. 

Keywords: electro-goniometers; validity; continuous relative phase; cycling 

 

1. Introduction 

Historically, cycling kinematics research has tracked joint and segment positions in an effort to calculate 

joint ranges of motion [1]. These joints are then, most commonly, analysed in isolation [2–5]. Although this is 

the most widely replicated approach, it has been criticised for not effectively capturing the complexity of 

coordinated motion [6]. 
As an alternative, it has been suggested that the continuous, multi-joint nature of the cycling task [7] lends 

itself best to a continuous relative phase (CRP) method of analysis, whereby the influence of one segment’s 

motion upon an adjacent segment can be more readily acknowledged. This is achieved by calculating the joint 

angle at each joint across the entire motion cycle and then using angle–angle plots. These plots can then be 

quantified using vector coding techniques to establish the relative motion of two adjacent joints [8]. 
CRP values can range from 0◦ to 360◦, where 0◦ shows the respective movements of the coupled joints 

perfectly in-phase, and 180◦ indicates that they are perfectly anti-phase. Any value between these indicates a 

relative amount of in-phase or anti-phase movement. 

Inconsistencies with this reporting convention have been identified [9], with some authors choosing to 

report values only between 0◦ and 180◦, given that the values −180◦ and 180◦ both indicate anti-phase 

behaviour, whilst others utilise both the positive and negative values because they have qualitative meaning 

that should be preserved. For example, it has been suggested that preserving the negative values is important 

because if the phase angle of the proximal segment is subtracted from the phase angle of the distal segment, 

then positive continuous relative phase values indicate that the distal segment is ahead of the proximal segment 

in phase space, therefore providing a clearer image of the coupling’s interaction [10]. 
The level of detail offered by CRP analysis allows a more detailed evaluation of the interactions along the 

kinematic chain and has been suggested to be especially important where one end of the segmental chain is 

effectively fixed, in the case of cycling through its attachment to the pedal. The consideration of the coupling 

relationship between segments has been therefore suggested to be especially crucial in the analysis of cycling 

motion [11]. Additionally, CRP analysis has been deemed to be more sensitive to changes in coordination [12] 

and could offer greater insight into the changing techniques employed in response to learning environmental 

changes such as wind speed or road surface or other independent variables [13]. 
CRP has traditionally been measured using motion-capture systems in a laboratory setting [14–16]. This 

requires the duplication of a cyclist’s equipment using an ergometer due to the amount of distance covered 

during a cycling bout and the inability to calibrate such an extensive capture volume for kinematic analysis. 

There is, however, a readily available body of literature that focusses on the lack of ecological validity of such 

an approach. Studies have shown that there is a significant difference in cycling speed and power output 

between laboratory and road conditions during time trial events [17,18], whilst others have shown that crank 

torque profiles are significantly different when comparing laboratory and outdoor cycling conditions [19]. This 

has prompted calls to move towards a testing environment where riders can use their own bikes to accurately 

replicate “real-world” performance [1], an approach which may be facilitated by the use of electro-goniometers 

during field testing. 
Electro-goniometers have long been used for the measurement of lower extremity joint motion [20], and 

their physical characteristics make them suitable for practical applications within biomechanics [21]. The 

lightweight equipment and non-invasive methods of data collection, coupled with the ability to record offline 

data logging systems, makes them a potentially excellent choice for field-based assessments within cycling. 

Indeed, they have already been assessed in terms of their suitability for use in professional bike-fitting services 

[22] and have been found to be more accurate and valid for use within laboratory studies than manual methods 
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of measuring knee joint range of motion [23]. Despite this, to the best of the authors’ knowledge, electro-

goniometers have yet to be used to calculate CRP during cycling efforts. 
The aim of this study, therefore, was to extend the initial findings reported at the ECSS 25th Annual 

congress [24] in an effort to investigate whether electro-goniometers offer a valid method for the calculation of 

CRP values during cycling performance. If this is the case, investigations into cycling techniques can move to a 

more ecologically valid setting, whilst considering the interconnected nature of joint movements which occur 

during the movement. 

2. Materials and Methods 

2.1. Participants 

Seven participants (4 male, 3 female, age: 29 ± 7 years, height: 1.76 ± 0.10 m, mass: 

71.97 ± 11.57 kg) volunteered to take part in the study. Participants were recreationally active and free from 

injury at the time of testing but were not trained cyclists. All participants provided written informed consent 

before taking part in this study, which had local ethics committee approval in accordance with the rules of the 

Declaration of Helsinki of 1975, revised in 2013. 

2.2. Procedure 

Participants were invited to adjust the cycle ergometer (Wattbike Pro cycle ergometer, Wattbike, UK) to 

their comfort. This configuration was maintained throughout the testing session. Reflective markers (Qualisys, 

Sweden) were attached to the participant’s right leg at the greater trochanter, lateral femoral condyle and 

lateral malleolus. A marker was also attached to the lateral side of the participant’s shoe, with placement 

determined by palpation to establish the positioning of the base of the 5th metatarsal. Bi-axial 

electrogoniometers (Biometrics, UK) were attached at the hip, knee and ankle. The electrogoniometer at the 

hip was aligned vertically with the strain gauge running immediately posterior to the greater trochanter marker 

and the terminals positioned equidistant superior and inferior to the marker. The electro-goniometer at the 

knee was positioned on the medial aspect of the knee, aligned vertically with the strain gauge running directly 

over the medial femoral condyle and the terminals equidistant superior and inferior to this landmark. The 

electro-goniometer at the ankle was attached so that the superior terminal was aligned vertically above the 

medial malleolus, the strain gauge ran over the medial malleolus and the inferior terminal was positioned 

horizontally on the participant’s shoe so that the electro-goniometer recorded an angle of 90◦ with the 

participant standing in the anatomical reference position. Goniometers were “zeroed” before application and 

applied to achieve values close to 0◦, 0◦ and 90◦, respectively. 

Participants performed exercise bouts of 30 s at four prescribed cadences (60, 80, 100, 120 rev·min−1) on 

the stationary ergometer (Wattbike, UK), with freely chosen resistance. Participants were given free choice of 

riding posture but asked to maintain the same position across all conditions. 

2.3. Data Analysis 

Measures were synchronously recorded by the bi-axial electro-goniometers (Biometrics, UK) and a 12-

camera motion-capture system (Qualisys, Sweden), with both systems recording at 500 Hz. Raw marker 

trajectories were used to calculate sagittal plane joint angle and joint angular velocity, which were recorded at 

the hip, knee and ankle and analysed for 10 complete pedal revolutions per participant per condition. Data were 

interpolated to 100 time points and used to calculate mean continuous relative phase (CRP) per pedal revolution 

at two intra-limb couplings: (i) knee flexion/extension–ankle plantarflexion/dorsiflexion (KA) and (ii) hip 

flexion/extension–knee flexion/extension (HK). 
Following checks for normal distribution, a combination of repeated measures T-tests and Wilcoxon signed 

rank tests were used to check for significant differences between measurement systems, followed by intra-class 

correlation coefficients (ICC) via the two-way mixed model to quantify the consistency of the CRP values 

produced by the two systems. 
All statistical testing was performed using IBM SPSS statistics (IMB Corporation, Armonk, NY, USA), with an 

alpha level set at p < 0.05. 
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3. Results 

When comparing the mean CRP values produced by the two systems (Table 1), there were statistically 

significant differences (p < 0.05) at 80 and 100 rev·min−1 for the Hip–Knee coupling and at 120 rev·min−1 for the 

Knee–Ankle coupling. 
The goniometers appeared to report consistently higher mean values at the Hip– 

Knee coupling across all cadences. This is also true for 80, 100 and 120 rev·min−1 for the Knee–Ankle coupling, 

with the goniometers apparently under-reporting at 60 rev·min−1, compared to the previously validated 

camera system (Table 1). 
 

Table 1. Comparisons between mean continuous relative phase values produced across a complete pedal revolution. 
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* Denotes a significant difference between systems at p < 0.05. 

When comparing the mean maximum knee angle, there was further evidence that the two systems did 

not agree, with statistically significant differences (p < 0.05) being seen at all cadences (see Table 3). This was 

also the case when comparing the mean minimum knee angle (see Table 3). Again, statistically significant 

differences (p < 0.05) were recorded at all cadences. 

Coupling Cadence (rev·min−1) Mean CRP Value (Mean ± SD) Sig. ICC 

  Camera System Goniometers   

Hip–Knee 60 3.57 (±1.94) 5.55 (±1.05) 0.080 −0.413 

Hip–Knee 80 3.33 (±2.36) 6.81 (±1.84) 0.043 * −0.272 
Hip–Knee 100 2.48 (±1.76) 7.19 (±1.73) 0.028 * −0.103 
Hip–Knee 120 7.81 (±6.57) 13.59 (±5.23) 0.191 −0.418 

Knee–Ankle 60 11.43 (±4.83) 8.71 (±3.36) 0.066 0.749 
Knee–Ankle 80 12.31 (±6.13) 13.17 (±6.67) 0.691 0.664 
Knee–Ankle 100 12.26 (±6.70) 18.95 (±13.11) 0.176 0.346 
Knee–Ankle 120 11.29 (±5.10) 29.22 (±16.25) 0.009 * 0.376 

* Denotes a significant difference between systems at p < 0.05. 

Intra-class correlation coefficients were created via the two-way mixed model to quantify the consistency of the CRP 
values produced by the two systems (see Table 1 The majority of these coefficients were below 0.5, suggesting poor 

levels of reliability between systems. The only exceptions to this were seen at 80 and 100 rev·min−1 at the Knee–Ankle 
coupling, where values of 0.749 and 0.664, respectively, were recorded. This would suggest, at best, a moderate level 
of agreement between systems, and predicated further investigation into the basic joint position data produced by 
each system to ascertain the reason for such discrepancies. 

Comparing positional data between systems using Wilcoxon signed rank tests, it became apparent that there were 

significant differences (p < 0.05) at all cadences when comparing mean maximum hip angle and mean minimum hip 

angle (Table 2). The only exception to this was at 80 rev·min−1 (p = 0.197), where there was no statistically significant 

difference between the two systems; however, the large standard deviation value (±18.95) in the goniometer dataset 

does offer some cause for concern. 

Table 2.Comparison of mean maximum and mean minimum hip angle recorded across 10 pedal revolutions. 

Cadence (rev·min−1)  60 80 100 120 

Measurement System  Camera Goniometer Camera Goniometer Camera Goniometer Camera Goniometer 
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Levels of reported ankle flexion/extension were also statistically significantly different 
(p < 0.05) between the two measurement systems at all cadences with regards to both maximum and minimum 

mean reported values (see Table 4). 
In summary, positional data suggested that the goniometer systems consistently overreported both 

maximum and minimum values for hip and knee flexion/extension, while simultaneously under-reporting the 

corresponding values at the ankle. 

  

Table 3.Comparison of mean maximum and mean minimum knee angle recorded across 10 pedal revolutions. 

Cadence (rev·min−1)  60 80 100 120 

Measurement System Camera Goniometer Camera Goniometer Camera Goniometer Camera Goniometer 

 

 

 * Denotes a significant difference between systems at p < 0.05. 

Table 4. Comparison of mean maximum and mean minimum ankle angle recorded across 10 pedal 
revolutions. 

Cadence (rev·min−1)  60 80 100 120 

Measurement System Camera Goniometer Camera Goniometer Camera Goniometer Camera Goniometer 

 

 
* Denotes a significant difference between systems at p < 0.05. 

4. Discussion 

Results from this investigation suggest that bi-axial electro-goniometers are not a valid method for 

recording CRP values during simulated cycling efforts. There were statistically significant differences (p < 0.05) 

between measurement systems in two of four tested cadences for the Hip–Knee coupling, and a further 

significant difference was reported at 120 rev·min−1 for the Knee–Ankle coupling. The lack of agreement 

between systems was further supported by ICC values, which mostly fell below 0.5, showing poor levels of 

agreement between systems [25] when calculating CRP. 
The discrepancy between systems could be because signal values were not normalised. 

There has been some debate as to whether or not normalisation would avoid the magnitude of values from one 

segment dominating the CRP pattern [9]. However, multiple studies [9,10] concluded that, in the case of joint 

kinematics, normalisation is not required because the finite values are unimportant—it is the relative phase that 

is of interest. Calculation of CRP, therefore, appears to require normalisation of values against time, as 

performed here, but not normalisation of the original signal values themselves. 
As shown above, further investigation into the reason for the lack of agreement revealed statistically 

significant differences (p < 0.05) between systems at the fundamental level of measured angular position. The 

two systems only agreed in terms of the minimum angle recorded at one joint (the hip), in one condition (80 

rev·min−1). All other comparisons returned significantly different results. Discrepancies at this level make it 

almost inevitable that there will be differences between reported CRP values, based, as they are, on differing 

fundamental measures. 
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The reason for such discrepancies in basic measures of angular position could, in part, be attributed to 

poor experimental control in terms of goniometer placement. Although every effort was made to replicate the 

exact placement described in the Methods Section above, the lack of anatomical landmarks to use for 

reference means it is possible that there was some variation in placement between participants. 
Even if placement was perfectly replicated between participants, it has been suggested that the human 

body lacks even surfaces and right angles on which to attach sensors of this nature to accurately calculate joint 

angles [26]. The suggestion being that the lack of flat surfaces means the orientation of a measurement device 

cannot possibly be aligned with any physiologically meaningful axis. This is especially apparent at the knee, 

where despite traditionally being described as a single planar hinge joint, there are degrees of freedom relating 

to flexion/extension, abduction/adduction and internal/external rotation [27,28]. Although 

abduction/adduction and internal/external rotation angles very rarely exceed a range of ±10◦ [29], it is possible 

that this is enough to affect the measurement of angular position when using a system such as the electro-

goniometers used here, which assume entirely planar motion. 
Related concerns with the placement of the electro-goniometers include the influence of soft-tissue 

movement artifacts, the suggestion that surface-mounted markers may not adequately represent true 

anatomical locations and the assumption that markers attached to the skin surface are rigidly connected to the 

underlying bones [30,31]. It has been reported that skin marker trajectories showed up to a 31 mm error, when 

compared to a prosthesis-embedded anatomical frame, and up to a 192% root mean square error in 

abduction/adduction estimations taken from markers placed on the thigh and shank. Although the reflective 

markers used in this investigation were placed on bony anatomical landmarks (greater trochanter, lateral 

femoral condyle and lateral malleolus) to remove the influence of such artifacts, it should be noted that it is not 

possible to mount the electrogoniometers in such a way. The electro-goniometers, therefore, may have been 

subject to the type of soft-tissue movement artifacts described above, and this could contribute to the lack of 

agreement between systems in terms of fundamental angular position and CRP. 
A potential limitation of the current study relates to the way in which the measures were produced. 

Although care was taken to match the sampling frequencies of the systems at 500 Hz and the same 10 

revolutions were analysed per participant per condition, the systems themselves were not synchronised. It is 

possible that this may have contributed to the differences seen between systems, but it is worth noting that, 

even at the highest cadence (120 rev·min−1), the chosen sampling rate still provides approximately 250 measures 

per pedal revolution. 
In the current investigation, CRP was reported as a mean value for an entire pedal revolution. The poor 

agreement between systems shown at this level meant that it was deemed more worthwhile to investigate the 

root of the discrepancies between systems rather than delve further into the divisions of a pedal revolution, but 

this is something which would be recommended once a valid measurement system has been established. 

Reporting a single CRP value averaged across a complete pedal revolution may not offer enough detail 

throughout the various phases of the revolution to fully exhibit the nuanced kinematics at play. Therefore, it is 

suggested that future studies should split the pedal revolution into separate power and recovery phases. This 

approach has been adopted previously [32] and has, at times, been extended to an even more detailed analysis 

of four “quarters” across the pedal revolution [33–35]. The purpose of such a split would be to effectively 

separate the power and recovery phases from the areas at the top and bottom of the pedal revolution, which 

have long been identified as areas where pedalling kinematics are altered due to tangential force being at a 

minimum [36,37]. 

5. Conclusions 

Although it has been suggested that the use of CRP analysis provides information that cannot be obtained 

through conventional angular position vs. time presentation, the results from this study would suggest that bi-

axial electro-goniometers are not a suitable method for recording such values. 
Further investigations are recommended to establish a valid alternative to traditional motion-capture 

systems so that investigations into joint-couple motions during cycling may move to a more ecologically valid 

setting that accurately replicates the “real-world” performances of athletes. 
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