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Abstract

The link between athlete physique and performance in sports is well established. However,

a direct link between somatotype three-numeral rating and anaerobic performance has not

yet been reported. The purpose of this study was to assess the relations between somato-

type and anaerobic performance using both singular and multivariate analyses. Thirty-six

physically active males (mean ± standard deviation age 26.0 ± 9.8 years; body mass 79.5 ±
12.9 kg; height 1.82 ± 0.07 m) were somatotype-rated using the Heath-Carter method. Sub-

jects were assessed for 3 repetition maximum (3 RM) bench press and back squat, and

completed a 30-second maximal sprint cycle test. Positive correlations were observed

between mesomorphy and 3 RM bench press (r = 0.560, p < 0.001), mesomorphy and 3

RM back squat (r = 0.550, p = 0.001) and between mesomorphy and minimum power output

(r = 0.357, p = 0.033). Negative correlations were observed between ectomorphy and 3 RM

bench press (r = -0.381, p = 0.022), and ectomorphy and 3 RM back squat (r = -0.336, p =

0.045). Individual regression analysis indicated that mesomorphy was the best predictor of

3 RM bench press performance, with 31.4% of variance in 3 RM bench press performance

accounted for by the mesomorphy rating (p < 0.001). A combination of mesomorphy and

ectomorphy best predicted 3 RM back squat performance (R2 = 0.388, p < 0.04). Around

one third of strength performance is predicted by somatotype-assessed physique in physi-

cally active males. This could have important implications for the identification of those pre-

disposed to perform well in sports containing strength-based movements and prescription of

training programmes.

Introduction

A somatotype rating gives a categorisation of physique by using measures relating to body

shape and composition, assessing adiposity (fatness), musculo-skeletal robustness, and linear-

ity or slenderness. Somatotype “expresses genetic determinism, observed from the morpho-

constitutional point of view” [1] and can be identified by assigning a three-numeral rating rep-

resenting endomorphy, mesomorphy and ectomorphy [2]. In short, the somatotype gives a

holistic quantification of the morphology and characteristics of the human body [3]. Authors

have recognised the potential application of somatotype analysis to identify talented perform-

ers and in the design of training programmes [4].
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Anthropometric dimensions influence the ability to perform physical activity [5]. In the

athletic population, specific physiques, particularly somatotypes based on the dominant num-

ber on the three-numeral rating, have been associated with success in sporting competitions

[6–9]. Whilst research has demonstrated that exercise and diet can influence an individual’s

somatotype [10], heritability levels of somatotype appear to be moderate [11] to high [12].

Thus, whilst somatotype may be altered, there may be a limit to the magnitude of change.

It is generally not understood whether training for sports brings about physical changes [9],

or whether individuals with existing morphological traits become most successful if they enter

specific sports [13]. It may even be a combination of both factors, and may be a result of bi-

directional relationships between genetics and the environment as suggested by Gottlieb’s [14]

theory of probabilistic epigenesis. Given the strength of heritability of somatotype components

suggested by Peeters et al. [12] and the suggestion by many that somatotype and performance

are related, it is necessary to establish the relation between somatotype and aspects of perfor-

mance in a more comprehensive manner. The suggestion that somatotype itself accounts for

up to 65% of the variance in physical fitness tests in adult sportsmen [15] further strengthens

the somatotype-performance observation.

Successful athletes in many sports appear to have high mesomorphy ratings, demonstrating

strong musculo-skeletal development [7]. In general, larger muscles are able to produce higher

strength outputs [15], which can lead to superior anaerobic performance. Many studies have

established the link between absolute and task specific strength or power and mesomorphy [1,

4, 8, 15, 16]. However, none of these studies investigate how the magnitude of the other ratings

influence performance alongside mesomorphy. Ectomorphy and endomorphy have often

been found to explain some of the variance in performance where body propulsion is impor-

tant such as in explosive leg power [4, 16,17], the association being a positive one with ecto-

morphy and a negative one with endomorphy. However, low scores in ectomorphy can be

advantageous in strength movements where short levers are preferable [6]. Previous research

has also demonstrated differences in training-related hormone concentrations both at rest and

post-exercise between somatotypes that may help to explain differences in anaerobic perfor-

mance [18].

The combination of individual somatotype components has received some interest recently.

Changes in one somatotype element have been demonstrated to result in changes in another in

adolescents over time [19]. Willgoose & Rogers [20] observed a similar pattern in 153 University

students. They indicated that mesomorphs with higher endomorphic components were likely

to have lower strength and physical fitness index scores than those with lower endomorphic

components. Song, Claessens, Lefevre and Beunen [21] and Peeters et al. [12] observed that the

three somatotype components share genes and environmental factors that contribute to more

than 70% of the total variance of each component. They therefore concluded that somatotype

should be subject to multivariate analysis rather than looking at each component separately.

The aim of this study, therefore, was to assess the relations between components of somato-

type and anaerobic performance using both singular and multivariate analyses. It was hypothe-

sised that there would be a significant relation between multiple components of somatotype

and anaerobic performance, and that somatotype as a three-numeral rating could be used as a

predictor for anaerobic performance factors.

Methods

Subjects

Thirty-six physically active males (mean ± standard deviation age 26.0 ± 9.8 years; body mass

79.5 ± 12.9 kg; height 1.82 ± 0.07 m) were recruited to the study via convenience sampling.
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Adverts were posted to institutional platforms such as emails and noticeboards at local univer-

sity facilities, sports clubs and leisure centres. This research was approved by the Institutional

Ethics Committee of University of Winchester on 21st February 2013. All subjects were pro-

vided with an information sheet and consent form, detailing the purpose of the study and their

right to withdraw at any time without any disadvantage of any kind, prior to the start of test-

ing. As such subjects provided written informed consent to participate in the study.

Methodology

Subjects’ anthropometric profiles were measured by a Level 3 International Society for the

Advancement of Kinanthropometry (ISAK) anthropometrist using ISAK protocols [22]. Mean

technical error of measurement for skinfolds was 2.12% and for all other measures 0.16%.

Intra-class correlation coefficient (ICC) was 1.00 for all measures. Standing height (Seca 213

stadiometer, Birmingham, UK: Seca), body mass (Seca Quadra 808 digital scales, Birmingham,

UK: Seca), biceps, triceps, subscapular, iliac crest, supraspinale, abdominal, front thigh and

medial calf skinfolds (Harpenden skinfold calipers, Southam, UK: HAB International), upper

arm girth (flexed and tensed) and medial calf girth (Cescorf anthropometry tape, Porto Alegre,

Brazil: Cescorf), and bi-epicondylar humerus and bi-epicondylar femur breadth (Holtain bone

calipers, Pembrokeshire, UK: Holtain) were measured for each participant. Data from the

anthropometric assessments were used to calculate somatotype values using the Heath-Carter

anthropometric somatotype equations [23]. Mean (± standard deviation) somatotype for the

group was: endomorphy 3.4 (± 1.8), mesomorphy 4.5 (± 1.5), ectomorphy 2.6 (± 1.6).

Each participant completed a strength assessment to determine their 3 repetition maximum

(3 RM) for bench press and back squat. Due to the mixed experience of participants in weight-

lifting it was decided that a 3 RM would be the safest method of testing near-maximal strength,

whilst also being a reliable method compared to 1RM in both trained and untrained partici-

pants [24]. The 3 RM testing followed guidelines provided by ACSM [25] for 1 RM testing but

terminated when the participant could only complete 3 repetitions. Subjects initially com-

pleted a 5-minute steady paced cycle and a series of submaximal repetitions of both bench

press and back squat in order to warm-up. An initial load was placed on the bar based upon

the participant’s perceived ability from previous experience and the participant was required

to complete as many repetitions as possible with this load. Following a rest period of 3–5 min-

utes, the load was increased by 2.5–20 kg (dependent on how many repetitions had been

achieved in the previous attempt) and the exercise repeated. When the participant could only

complete 3 repetitions of that exercise, the load on the bar was recorded as the 3 RM. Where

possible, final 3 RM for each exercise was determined within 4 trials. This was achieved for

80% of participants for both exercises, and 100% of participants for at least one of the

exercises.

On a separate day, with at least 48 hours rest subjects completed a submaximal incremental

protocol on a cycle ergometer (SRM Training System, Julich, Germany: SRM), starting at 70

W and increasing by 30 W every 5 minutes until blood lactate concentration (extracted from

the fingertip) was in excess of 4 mmol.L-1 for two stages (Biosen C-Line, Cardiff, UK: EKF

Diagnostics). Following a 15 minute rest period subjects then completed to a further incre-

mental protocol to exhaustion. The protocol commenced at the power output 60 W below

their final power output on the previous test and increased by 5 W every 15 s. Average power

output over the final 60 s of the protocol was calculated as each individual participant’s maxi-

mal aerobic power (MAP).

On a further separate occasion with at least another 48 hours rest, subjects completed a

maximal sprint cycle. Subjects completed a 10-minute warm-up prior to the test (5 minutes at
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100 W and 5 minutes at 60% of individual MAP measured during the previous session) and

had a capillary blood sample collected from their fingertip for lactate concentration analysis,

pre-test, immediately and 5-minutes post-test. The maximal sprint cycle test involved subjects

completing a maximum effort for 30 s on a cycle ergometer (Monark 894E Peak, Sverige, Swe-

den: Monark) against a resistance of 7.5% body mass [26]. Peak, mean, and minimum power

output and time to peak power output were obtained from the computer software linked to

the cycle ergometer (Monark ATS Software, Sverige, Sweden: Monark). Fatigue index was cal-

culated as a percentage using the drop in power post peak divided by the peak power and mul-

tiplied by one hundred as follows:

Fatigue Index %ð Þ ¼
Peak power ðWÞ � Minimum Power ðWÞ

Peak Power

� �

x 100 ð1Þ

A summary of the participant‘s demographics for anthropometry and performance is

shown in Table 1.

Statistical analysis

A Shapiro-Wilk test was used to determine that all data were normally distributed. A Pearson

correlation analysis was completed to compare somatotype ratings for endomorphy, meso-

morphy and ectomorphy with 3 RM bench press, 3 RM back squat, peak power output, mean

power output, minimum power output, time to peak power and fatigue index and assessed

using Cohen’s [27] correlation thresholds of 0.1 (small), 0.3 (medium) and 0.5 (large). Where

significant correlations were observed (p< 0.05), individual regression analysis was completed

for each measured variable using the relevant somatotype categories as predictors. All statisti-

cal analysis was carried out using IBM SPSS for Windows (IBM Corp. Released 2013. IBM

SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.).

Results

Significant positive correlations were observed between mesomorphy and 3 RM bench press

(r = 0.56, p< 0.000) (Fig 1), mesomorphy and 3 RM back squat (r = 0.55, p = 0.001) (Fig 1),

and mesomorphy and minimum power output (r = 0.36, p = 0.033). Significant negative corre-

lations were observed between ectomorphy and 3 RM bench press (r = -0.38, p = 0.022) (Fig

Table 1. Mean and standard deviation anthropometric and performance data for study participants (N = 36).

Measure Mean Standard Deviation

Height (m) 1.82 0.07

Body Mass (kg) 79.5 12.9

Endomorphy 3.4 1.8

Mesomorphy 4.5 1.5

Ectomorphy 2.6 1.6

3 RM Bench Press (kg) 61.0 18.1

3 RM Back Squat (kg) 89.6 27.5

Peak Power Output (W) 1014.6 196.8

Mean Power Output (W) 690.3 105.9

Minimum Power Output (W) 424.2 109.6

Time to peak power (s) 2.4 1.4

Fatigue Index (%) 57.3 11.8

https://doi.org/10.1371/journal.pone.0197761.t001
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2), and ectomorphy and 3 RM back squat (r = -0.34, p = 0.045) (Fig 2). There were no other

significant correlations (p> 0.05) between somatotype ratings and measured variables.

Individual regression analyses indicated that mesomorphy was the best predictor of 3 RM

bench press performance (p< 0.001). A combination of mesomorphy and ectomorphy was

the best predictor of 3 RM back squat performance. Mesomorphy alone accounted for 30.3%

of the variance in 3 RM back squat performance (Step 1; p< 0.05), rising to 38.8% with the

addition of the ectomorphy rating into the model (Step 2; p< 0.04). The results from the

regression analyses are shown in Table 2. The regression models are as follows:

3 RM Chest Press ðkgÞ ¼ 30:42þ ð6:85�mesomorphyÞ ð2Þ

3 RM back squat ðkgÞ ¼ � 24:53þ ð19:80 x mesmorphyÞ þ ð10:00 x ectomorphyÞ ð3Þ

Discussion

The aim of this study was to assess the relation between somatotype and anaerobic perfor-

mance. Mesomorphy demonstrated a large positive significant relation with absolute strength

performance in 3 RM bench press and back squat according to Cohen’s [27] definitions on

correlation thresholds where 0.5 is considered large. The ectomorphy to strength relation was

significant and medium. Endomorphy was not significantly correlated with strength perfor-

mance. The current study recorded a broad range of somatotype component ratings (endo-

morphy 1.2–8.3; mesomorphy 0.7–8.7; ectomorphy 0.1–7.1) giving a clear indication of the

relation between somatotype and anaerobic performance across the range of different

Fig 1. Relation between mesomorphy and 3 RM bench press (p< 0.001) and mesomorphy and 3 RM back squat (p = 0.001).

https://doi.org/10.1371/journal.pone.0197761.g001
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somatotypes. This makes it the first comprehensive study to determine how combined somato-

type components predict key aspects of physical performance.

Saha [16] showed that somatotype and body composition variables are important factors in

determining leg explosive power. Recognising that power is derived from strength and speed

[28] the results of this study appear to confirm those of Saha [16]. Saha [16] found that

Fig 2. Relation between ectomorphy and 3 RM bench press (p = 0.022) and ectomorphy and 3 RM back squat (p = 0.045).

https://doi.org/10.1371/journal.pone.0197761.g002

Table 2. Regression model for 3 RM bench press (a), and 3 RM back squat (b) (N = 36).

B SE B β

(a)

Constant 30.42 8.15

Mesomorphy 6.85 1.74 0.56�

(b)

Step 1

Mesomorphy 10.23 2.66 0.55�

Step 2

Mesomorphy 19.80 5.15 1.07�

Ectomorphy 10.00 4.68 0.59��

R2 = 0.31 for (a). R2 = 0.30 for (b) step 1, ΔR2 = 0.09 for (b) step 2 (p<0.05).

�p � 0.001.

�� p � 0.05.

https://doi.org/10.1371/journal.pone.0197761.t002
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mesomorphy and ectomorphy components of somatotype were positively correlated with leg

explosive power. The mesomorphy relation was slightly smaller than in the current study

(r = 0.55) with r = 0.52 for athletes and r = 0.43 for non-athletes. This indicates that the relation

between explosive leg power and somatotype is remarkably similar to that between strength

and somatotype. This relationship could have important implications for using somatotype

and its components to predict performance in power-based sports.

The current study demonstrated a negative correlation between ectomorphy and upper and

lower body strength performance. These are similar results to Lewandowska et al. [8] who

demonstrated negative correlations between ectomorphy and various combinations of muscle

torque measurements in judoists. In contrast to the current study finding no relation between

endomorphy and any of the measured components, Saha [16] reported a significant negative

correlation between the endomorphy component and leg explosive power, regardless of train-

ing experience. The differences between Saha’s [16] study and the current study indicate that

ectomorphy and endomorphy could be important in predicting movements where transloca-

tion of mass is required, such as in explosive leg power movements [17]. This is supported by

results from Busko et al. [4] who observed a significant positive correlation between ectomor-

phy and maximal power during countermovement jumps, but also between mesomorphy and

maximal power during countermovement jumps. The current study minimised the transloca-

tion of mass by using single-plane joint movements where endomorphy had no influence and

where ectomorphy hindered performance. Low scores in ectomorphy can be advantageous in

strength movements where short levers are preferential [6].

Multivariate analyses indicated that mesomorphy was the best component of somtatotype

to predict upper body strength, whilst both mesomorphy and ectomorphy predicted lower

body strength. In similar findings, Busko et al. [4] indicated that the muscle torques of the

upper extremities correlated significantly with the mesomorphy component only. However, in

the current study the strongest prediction model of lower body strength combined both meso-

morphy and ectomorphy components. In the multivariate analysis, the addition of mesomor-

phy appears to override the negative relation of ectomorphy to strength, such that being more

slender and more muscular combine to create better lower body strength performance.

Indeed, the regression model suggests that as mesomorphy increases by 1 unit, 3 RM squat

performance will increase by 19.8 kg, and as ectomorphy increases by 1 unit, 3 RM squat per-

formance will increase by 10.0 kg. The combination of high mesomorph and ectomorph

somatotype influencing lower body strength may influence decisions in sports where lower

body strength is important, with recruitment not just identifying those with a predisposition

to muscle mass but also with a strong linearity potentially changing the optimum physique

seen in many power based sports.

The current study demonstrated a significant relation between minimum power output

and mesomorphy. This indicates that a higher mesomorphy value will result in a higher mini-

mum power value regardless of maximal power output and may be important for events that

require maintenance of power output such as speed endurance running and cycling events

(e.g. 200 m sprint in athletics or Keirin in track cycling). The current study found no signifi-

cant relation between any other anaerobic components of sprint cycle performance and indi-

vidual somatotype ratings. Busko et al. [4] found that power output at varying external loads

on a cycle ergometer correlated significantly with all components of somatotype. However,

Busko et al.’s [4] study only involved female volleyball athletes, all of whom were centred

around the endomorphy and ectomorphy somatotypes, there being very few mesomorphic

subjects. This would have resulted in a skew of the data such that correlations would not have

represented the full range of possible somatotype values, particularly those high in mesomor-

phy. The current study indicates that the addition of higher mesomorphic values reduces the

Somatotype and anaerobic performance
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relation between somatotype and power output during sprint cycling performance such that

physique is not a predicting variable for performance.

While the current study included participants representing a broad range of somatotype

ratings, the actual number of participants may have caused some instability in the regression

model. Green [29] suggests that the overall fit of a regression model is best tested when the

sample size is 50 + 8k, where k is the number of predictors; so in the example of this study a

regression model using all 3 somatotype ratings would need a sample size of 74 participants.

However, Field [30] indicates that this is an oversimplification of the situation and that the

sample size needs to be based on the effect size. If Cohen’s [27] benchmark of 0.8 is used for a

large effect size and compared to graphs produced by Miles and Shevlin [31] then an ideal

required sample size of 40 participants is suggested for 3 predictor variables, very close to the

current study sample size.

Establishing the relation between strength and physique could provide important informa-

tion in the design of training programmes. It is important to recognise that muscular strength

performance is also determined by other biological and behavioural variables [17]. In particu-

lar, influencing factors upon the remaining two thirds of strength performance in the current

study may have included the individual impact of the chosen warm-up [32–34], where some

participants chose to stretch and others did not. Further, pre-performance mental state and

nutritional status were not assessed in the current study and have previously been demon-

strated to influence strength performance [35–39] Indeed, the morphological state of somato-

type itself can be considerably influenced by prior exposure to neural, behavioural and

environmental events [14]. However, the current study indicates that over a 3rd of both upper

and lower body strength performance may be predicted by one or more somatotype compo-

nents. If Ignjatovic et al.’s [40] argument, that those who are stronger have an advantage in

strength training, holds true, then it would seem that those with certain physiques may also

have an advantage in strength training since the prediction model suggests that a higher meso-

morphy rating relates to higher strength. Any advantage in strength training apportioned to

higher mesomorphy ratings could also be related to relations between training-associated hor-

mones (cortisol, ACTH) and somatotype, both at rest and post exercise [18]. Authors have

suggested that there is a relation between somatotype and trainability in children [41] and

young people [40]. Whilst training will, inevitably, alter some anthropometric characteristics

relevant to somatotype, such as body weight and muscle mass, there are others that are deter-

mined by genetics (e.g. height and bone breadth) [42]. Due to the high genetic determinability

of somatotype (up to 85% [43]), this may mean that strength training responses are specific to

physique [42].

Conclusion

This study has demonstrated a link between somatotype and an aspect of anaerobic perfor-

mance; strength, with at least one third of strength performance predicted by one or more

aspect of somatotype. In particular, it would seem that those who have high mesomorphy values

are predisposed to better strength performance. In the lower body, this may also be combined

with a higher ectomorphy value. Overall, these findings may have important implications for

both the identification of those predisposed to perform well in sports containing strength-based

movements and prescription of training programmes in physically active males.
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