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Abstract 17 

Mobile power meters provide a valid means of measuring cyclists’ power 18 

output in the field. These field measurements can be performed with very 19 

good accuracy and reliability making the power meter a useful tool for 20 

monitoring and evaluating training and race demands. This review 21 

presentsstudy examines power meter data from a Grand Tour cyclist’s 22 

training and racing and explores the inherent complications created by its 23 

stochastic nature. Simple summary methods cannot reflect a session’s 24 

variable distribution of power output or indicate its likely metabolic stress. 25 

Binning power output data, into training zones for example, provides 26 

information on the detail but not the length of efforts within a session.  An 27 

alternative approach is to track changes in cyclists’ modelled training and 28 

racing performances. Both Critical Power and Record Power Profiles have 29 

been used for monitoring training-induced changes in this manner. 30 

Ultimately,Due to the inadequacy of current methods, the review highlights 31 

the need for  new methods for to be established which quantifying the 32 

effects of training loads and modelsling their implications for future 33 

performance are required.  Although first proposed 40 years ago, our ability 34 

to model the effects of training on performance remain limited and merits 35 

further research.  36 

 37 

Keywords: Modelling, Endurance, Cycling, Power Output 38 
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Introduction 40 

Mobile power meters are devices that can be fitted to a bicycle to measure 41 

cyclists’ power output in the field. The detailed Ddata obtained from power 42 

meters can then be used to monitor and evaluate cyclists’ training and race 43 

performances. This power output data can be gathered in a range of field 44 

conditions including cycling on the road, track, off-road, or even indoors. 45 

The data obtained can also be used in different way depending on the 46 

cycling discipline to inform decisions relating to cycling position and 47 

technique (i.e. the effect of position/ or technique change on physiological 48 

parameters at a set power output), competition demands, and team and 49 

equipment selection. Power meters were first developed in the 1980’s with 50 

SRM (Schoberer Rad Messtecnik, Jülich, Welldorf, Germany) generally being 51 

acknowledged as the first to produce a commercially available system. Early 52 

adopters of the SRM system included the East German national cycling team, 53 

and Greg Lemond in the European professional peloton. Since its inception 54 

the SRM power meter has established itself as the standard against which 55 

others are compared. In recent years the market for power meters has 56 

developed considerably and there are now a number of manufacturers 57 

producing devices (e.g. Cycleops Powertap, Stages Cycling Powermeter, 58 

Garmin Vectors). Their technological approaches to measuring power 59 

output vary, but the most common method is to use strain gauges to 60 

measure the torque generated by the cyclist. Power output can be measured 61 

from a number of locations in the propulsive transmission system of a 62 

bicycle. Thus power meters can derive their measurement from the shoe 63 

(e.g. Zone DPMX), pedal (e.g. Garmin Vector), crank (e.g. Stages 64 
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Powermeter), bottom bracket axle (e.g. Rotor INpower), chain (e.g. 65 

Wattbike), or hub (e.g. Cyclops Powertap). The utility and success of these 66 

approaches depends upon the particular power meter’s measurement 67 

method and location. The majority of commercially available power meters 68 

measure torque directly at the pedal, crank, or rear wheel. The specific 69 

position of the power meter on the bicycle can be important for some 70 

cyclists. For example, track sprinters may be more interested in monitoring 71 

torque produced i.e. at the pedal or crank, rather than power output 72 

delivered to the wheel (at the hub). However, the primary concern for most 73 

power meter users is their validity  sensitivity, reproducibility and, 74 

repeatability of measurementand reliability. 75 

Validity 76 

The validity of the power meter can be high where power output is 77 

measured directly and calculated from its derivatives, angular velocity 78 

multiplied by torque Abbiss et al. (2009) divided by time. For example, at 79 

the rear hub angular velocity is calculated from wheel rotation, and torque 80 

from the force transmitted by the chain to the hub. The principle is similar at 81 

the pedal or crank, except angular velocity is given by cadence. The use of 82 

strain gauges allows accurate measurement of torque, but they are sensitive 83 

to changes in ambient temperature (Gardner et al. 2004; Wooles, Robinson 84 

& Keen, 2005). Therefore, care is needed in calibration, especially at the 85 

start of the ride, if the bicycle is moved from a warm to a cold location for 86 

example. The placement of the strain gauges dictates whether measured 87 

torque is separate for each leg, combined across both legs, or measured for 88 
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only one leg (and doubled). Instrumenting the pedals allows the torque 89 

pattern of left and right legs to be measured separately. This makes possible 90 

analysis of negative forces, generated as the pedal rises between bottom and 91 

top dead centre, and any bilateral asymmetry in pedalling style. 92 

Measurement of the combined torque of both legs occurs where the bicycle 93 

is instrumented anywhere in its propulsive transmission after the bottom 94 

bracket axle. This method cannot quantify ineffective torque, although some 95 

gross pedalling asymmetry may still be detectable. Moreover, although some 96 

power meters purport to examine negative forces, this requires a constant 97 

measurement of angular velocity, which most devices do not measure, 98 

instead calculating average angular velocity every revolution. A simple 99 

approach to determining power output is to bond strain gauges to a single 100 

crank and measure the torque from one leg only. Total power output is 101 

calculated as double the measured value, by assuming an equal and 102 

symmetrical contribution for the unmeasured leg. The validity of this 103 

assumption for pedalling symmetry remains unclear. Smak, Neptune & Hull 104 

(1999) found that asymmetry is related to limb dominance, and reported 105 

asymmetry ranging from 0.5% to 2.0%. Carpes, Mota, & Faria (2010) 106 

reviewed a number of studies with asymmetry values ranging from 5% to 107 

20%. They also noted that increasing cadence and power output tend to 108 

improve indices of symmetry. Therefore, where an overall measure of work 109 

rate in the field is required, power meters relying on a single crank 110 

measurement may be sufficient. For careful comparison between cyclists 111 

and work rates, stable bilateral symmetry should not be assumed though. 112 
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The principle of the power meter is valid, but the expected power output 113 

and its accuracy can vary according to the measurement conditions. The 114 

location of the power meter on the bicycle affectslters the expected power 115 

output. Frictional losses especially from the drive train dissipate some of the 116 

energy input. Therefore, a difference in simultaneous torque measurements 117 

should be found where these are made before and after the drive train, e.g. 118 

from the pedal and hub respectively. Drive train frictional losses are thought 119 

to be proportional to the total power output and have been suggested to 120 

amount to ~2.4% (Kyle, 1988; Martin, Milliken, Cobb, McFadden, & Coggan, 121 

1988). Regardless of where they are located, most commercially available 122 

power meters measure angular velocity simply by detecting complete hub 123 

or crank rotations. As a consequence when angular velocity is low or 124 

changes notably within a single revolution, the power meter’s accuracy may 125 

be compromisedsensitivity may be affected. Most power meters are unable 126 

to evaluate power output until its angular velocity is well above zero. Even 127 

once a minimum angular velocity threshold is exceeded, changes within a 128 

single revolution cannot be detected. For both these reasons power output 129 

measurement may not be accurate under conditions involving low angular 130 

velocity or marked acceleration, such as when evaluating standing starts 131 

(Martin, Gardner, Barras, & Martin, 2006; Bertucci, Crequy, & Chiementin, 132 

2013). Under these conditions of low or variable cadence and high torque it 133 

may be preferable to evaluate torque separately.  134 
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Accuracy and reliability 135 

The high accuracy and reliability of commercially available power meters 136 

have been demonstrated repeatedly (Jones and Passfield, 1998; Martin et al. 137 

1998; Gardner et al. 2004; Wooles et al. 2005; Bertucci, Duc, Villerius, 138 

Pernin, & Grappe, 2005). The early studies (Jones & Passfield, 1998; Martin 139 

et al. 1998) mounted SRM power meters onto a laboratory friction-braked 140 

ergometer for comparison. Both studies found an R2 > 0.99, and Jones & 141 

Passfield reported 95% limits of agreement to be as low as 0.3% between 142 

ergometer and power meter. But the assumption that a rope-braked 143 

laboratory ergometer provides an accurate reference calibration has been 144 

questioned (Gardner et al. 2004; Franklin, Gordon, Baker, & Davies 2006). 145 

Gardner et al. (2004) examined 26 power meters from 2 different 146 

manufacturers (SRM and Powertap), re-testing 15 power meters after 11 147 

months’ use. They found that both manufacturers’ power meters had similar 148 

reproducibilityerror scores of approximately (~2.5% error), with good 149 

long-term reliability and that results remained stable afterover 11 months’ 150 

of use. Wooles et al. (2005) performed repeat calibrations on 185 SRM 151 

devices across a period of 18 months. Their reported mean percentage drift 152 

in the calibration factor was only -0.15 once 3 devices with mechanical 153 

problems were excluded. Gardner et al. (2004) noted that some discrepancy 154 

in power measurement between the two SRM and Powertap devices was 155 

evident between the two manufacturers’ meters at the highest power 156 

outputs when used in the field. Bertucci et al. (2005) reported similarly high 157 

agreement when comparing the same manufacturers’ power meters, and the 158 

same exception for the highest power outputs. Indeed, it is noted that most 159 
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validity and reliability studies have been conducted across power outputs 160 

typical of elite endurance riders. Therefore for starts and sprints such as in 161 

the studies of Martin et al. (2006), and Bertucci et al. (2013) it may be worth 162 

checking that the linearity of response is maintained additional prior 163 

calibration across the expected range of measurement is recommended. 164 

Furthermore, fastidious attention to routine maintenance e.g. checking 165 

tightness of crank and chain ring bolts can be critical to achieving replicable 166 

results. In more recent studies not all power meter manufacturers have 167 

compared favourably with criterion devices (Bertucci et al. 2013 (G-Cog), 168 

Duc, Villerius, Bertucci, & Grappe, 2007 (ErgomoPro), Hurst & Atkins, 2006 169 

(Polar S710), Kirkland, Coleman, Wiles, & Hopker, 2008 (ErgomoPro), 170 

Millet, Tronche, Fuster, Bentley, & Candau, 2003 (Polar S710)). Therefore 171 

Consequently, it appears that the reasonable accuracy of commercial power 172 

meters should not be assumed until verified. Once established though, 173 

power meters can be used for monitoring training and performance with a 174 

long-term accuracy and reproducibility of 2.5% or less. Gardner et al. (2004) 175 

point out that this level of accuracy may still present an issue in detecting 176 

changes important to competitive cyclists. 177 

Analysing power output data from training and races 178 

Cyclists from recreational to elite use power meters to examine in detail the 179 

power output profile for their training or race performances. There are 180 

several studies characterising the power output of notable competitive 181 

events (Ebert, et al. 2005; Vogt et al. 2006; Vogt et al. 2007; Abbiss, Straker, 182 

Quod, Martin, & Laursen, 2010). In flat road races mean power output for 183 

Comment [JH1]: We will first discuss data 
binning methods, then modelling data, and 
inherent variability … 
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elite men was found to be 220±22 W or 3.1±0.2 W⋅kg-1, and for a hilly time-184 

trial 392±60 W or 5.5±0.4 W⋅kg-1 (Vogt et al. 2006). Mean power output for 185 

elite women in flat road races was 192±21 W or 3.3±0.3 W⋅kg-1 (Ebert et al. 186 

2005). In contrast to racing however, there is relatively little information or 187 

analysis of power meter training data, especially for elite cyclists over the 188 

course of a season.  189 

 190 

In this studyTo assist in exemplification of how power data from training 191 

and racing can be analysed we present power meter data from the 2011 192 

season of a prolific Grand Tour cyclist in the form of a case studythe 2011 193 

season for a prolific Grand Tour cyclist. To enable use to present this data 194 

within the review For this study we obtained local university ethics 195 

committee approval and informed consent from the cyclist for the use of his 196 

data. During the year the Grand Tour cyclist completed approximately 1143 197 

hours of training and covered a total of 35,622km. He competed regularly 198 

throughout the 2011 season most notably in the Tirreno-Adriatico, the 199 

Spring Classics, the Criterium du Dauphine, the Tour de France, the Eneco 200 

Tour, and the World Road Championships. In this review we have restricted 201 

our discussion to consider only methods of data interpretation that have 202 

been published in peer-reviewed journal articles. There are further 203 

proprietary methods such as Normalised PowerTM and Training Stress 204 

ScoreTM that we do not review here as they have not been validated in 205 

scientific studies published in peer-reviewed journals despite their common 206 

use by coaches and cyclists.     207 
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 208 

--------------- Figure 1 about here --------------- 209 

Interpreting mean power output 210 

Figure 1a and 1b illustrate the 30-second rolling mean power output from 211 

two training sessions. Analysis for many scientists, athletes and coaches 212 

may consist of simple visual inspection to identify characteristics of interest 213 

such as the highest power output, the number of intervals completed, or the 214 

extent of variation in power output. The mean power output for a training 215 

session provides one method of summarising or ‘smoothing’ the variation 216 

seen in Figure 1. Reducing a training session to a single number is attractive. 217 

The mean power output calculated for sessions in Figure 1a and 1b are 125 218 

W and 269 W respectively. However, these mean values provide no 219 

indication of the degree of variability in power output evident in Figure 1.  220 

 221 

Reflecting the implications of such variability usefully presents a major 222 

challenge for power meter data analysis. Often the mean power output will 223 

not be commensurate with the physiological strain a cyclist experiences 224 

unless the training session is constant-power in nature. Coggan (2003) 225 

proposed the use of an exponentially weighted mean or “normalized power” 226 

output to reflect the added stress a cyclist perceives during variable 227 

intensity sessions. Using the “normalized power” approach data are 228 

smoothed using a 30-s moving average (as this is the approximate time 229 

constant for many physiological processes [e.g. heart rate] to respond to a 230 
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change in exercise intensity), before being raised to the fourth power 231 

(derived from a regression of blood lactate concentration against exercise 232 

intensity). The transformed values are then averaged with the fourth root 233 

taken to provide the “normalized power”. Constant intensity sessions result 234 

in this weighted mean remaining unchanged from the actual mean, but for 235 

variable intensity sessions it increases as a function of the proportion of 236 

higher intensity training completed. As an example the weighted means of 237 

the two sessions in Figure 1a and 1b are increased by their variability from 238 

125 W to 158 W and from 269 W to 307 W respectively. Although widely 239 

used by cyclists to summarise their training sessions and races, the use of a 240 

“normalized power” or weighted mean has received limited scientific 241 

evaluation (Skiba, 2007). It is important to note that training sessions with 242 

very different physiological and metabolic characteristics can still result in 243 

the same weighted mean power output. Consequently, a more detailed 244 

analysis of power meter data is required where it is important to determine 245 

how the volume and intensity of cycling time was actually spenttraining 246 

(and racing) has been distributed. In the sections below we will propose 247 

some alternative methods to address the limitations of using averaged or 248 

weighted mean power outputs.  249 

Binning training data 250 

The mean and weighted mean provide helpful summary statistics, but 251 

cannot convey the power output distribution where a session is variable in 252 

nature. Instead, the power output distribution within a session can be 253 

described by the amount of time spent within designated training ‘zones’ or 254 
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data bins. To present the data visually the bins can be plotted to produce a 255 

session histogram. Indeed previous studies have used a data binning 256 

approach to investigate physiological responses during training and cycling 257 

competitions (Palmer et al. 1994; Lucia et al. 1999). This histogram 258 

approach to describing training data is illustrated below with data obtained 259 

from a Grand Tour Cyclist. The histogram illustrated in Figure 2 shows the 260 

two training sessions from Figure 1a and b separated into power output 261 

datatime bins. Ebert, et al. (2005) used a similar comparison for two types of 262 

women’s World Cup cycle road races. They calculated the percentage of total 263 

race time spent within four data bins (0–100 W, 100–300 W, 300–500 W 264 

and >500 W). Although simple, this method is excellent for the purpose of 265 

overall session comparisons (Jobson, Nevill & Jeukendrup, 2005).  266 

 267 

The use of data binning transposes the complex stochastic power meter data 268 

into a simple, easy to interpret output. A further method for analysing 269 

power meter data is to calculate the Maximum Mean Power output. This 270 

method sub-divides the power meter data into efforts of varying durations 271 

or epochs (typically from 5–600s) rather than intensities. The Maximum 272 

Mean Power output produced for each of these epochs is then identified 273 

(Quod, Martin, Martin, & Laursen, 2010). Changes in the power output 274 

associated with each epoch may better reflect specific training effects. 275 

However, as the data are collected during training and racing, changes in 276 

cadence, gear ratio, drafting, road gradient, environmental conditions and 277 

the tactical nature of mass start road races will all affect the power output 278 
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that is recorded in each epoch. Consequently, it may be more appropriate to 279 

examine the Maximum Mean Power output across a period of training or 280 

series of races rather than for individual sessions (Quod et al., 2010). Figure 281 

2 demonstrates the Maximum Mean Power output over two periods of the 282 

Grand Tour cyclist’s season.  283 

 284 

--------- Figure 2 near here-------------- 285 

 286 

Although simple and clear in use, the histograms depicting training zones or 287 

Maximum Mean Power output have some limitations. The values used to 288 

define each bin largely remain arbitrary and as such may not capture an 289 

important aspect of the data. However, some research has attempted to 290 

address this limitation by defining the data bin according to certain 291 

physiological landmarks such as the ventilatory or anaerobic thresholds 292 

(Munoz et al., 2014). However, the use of there physiological landmarks as a 293 

method to stratify training stress has yet to be fully validated. As training 294 

changes fitness, bin values may also need altering, but comparison between 295 

differently binned data becomes problematic.  Furthermore, the number or 296 

duration of efforts within a given data bin in not apparent. For example, a 297 

session that requires a single 4-minute effort at 400 W cannot be 298 

differentiated from one with four 1-minute efforts at 400 W. In contrast, 299 

Tthe subsequent training effects of these two sessions may be very different 300 

(Theurel & Lepers, 2008). In this regard, Figure 3 illustrates data from two 301 

different races for the Grand Tour cyclist. Both races in Figure 3 have exactly 302 
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the same mean (236W), but the variability in power output differs notably 303 

(SD 138W vs. 205W). Consequently, it would be anticipated that the 304 

resultant physiological stress from these two races would be very different. 305 

Using a binning method to analyse the power data would not necessarily be 306 

capable of identifying the difference in the variability of the two races.  307 

 308 

--------- Figure 3 near here-------------- 309 

 310 

Mathiassen & Winkel, (1991) proposed Exposure Variation Analysis as a 311 

method to examine activity that is stochastic in nature. Exposure Variation 312 

Analysis is a versatile data reduction method that can be used to analyse 313 

numerical data which is recorded continuously over time. Subsequently, 314 

Exposure Variation Analysis method has been used to examine not only how 315 

power meter data is distributed between training zones, but the duration of 316 

sustained efforts bouts too (Abbiss et al. 2010; Passfield, Dietz, Hopker, & 317 

Jobson, 2013). Thus Exposure Variation Analysis is performed by defining a 318 

fixed number of power bins which represent specific, non-overlapping 319 

power output intervals (in Watts), and a fixed number of acute time bins 320 

that represent specific, non-overlapping intervals of the time spent (in 321 

seconds) in a given power bin. Abbiss et al. (2010) used Exposure Variation 322 

Analysis to compare variations in the amplitude and time distribution of 323 

power meter data for different cycling events. They found that Exposure 324 

Variation Analysis was able to detect differences in the distribution of 325 

power output for different race formats. Moreover, Exposure Variation 326 
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Analysis has previously been used to examine the influence of fatigue and 327 

pacing on cycling performance (Peiffer & Abbiss, 2011). In Figure 4 we use 328 

Exposure Variation Analysis to further examine the two races with similar 329 

means but differing variation in power output from Figure 3. After Exposure 330 

Variation Analysis Figure 4 shows the distribution of power output 331 

measures across training zones, but also classified according to the duration 332 

of each effort. The effect of the greater variation in Race B can be seen as 333 

longer efforts are sustained at the higher exercise intensities. However, 334 

whilst this method can differentiate between different race characteristics, 335 

it is has yet to be established whether it is sensitive to training-induced 336 

changes (Passfield et al. 2013).  337 

 338 

--------- Figure 4 near here-------------- 339 

 340 

Critical power 341 

An alternative approach to assigning power meter data to bins or training 342 

zones is to model it instead. In recent years probably the most popular 343 

method for modelling endurance performance has been the Critical Power 344 

model. The Critical Power model is based upon the hyperbolic relation 345 

between power output (P) and time-to-exhaustion (t) originally described 346 

by Monod & Scherrer (1965) for bouts of repetitive lifting exercises 347 

performed using isolated muscle groups. A simple two-parameter model 348 

provides the mathematical representation of this relation: 349 
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  (P – CP)t = W′       [1] 350 

Where P is sustainable power output, CP is Critical Power, t is time and W’ is 351 

anaerobic capacity. 352 

 353 

To determine critical power a cyclist must typically complete 3–5 bouts of 354 

exhaustive exercise lasting between 3 and 20 minutes (Vandewallef, Vautier, 355 

Kachouri, LeChevalier, & Monod, 1997). Mean power output from each bout 356 

is then modelled using equation 1 to construct a power output-duration 357 

curve. Thus the critical power is a relevant parameter for cyclists to 358 

consider as a significant period of time during both road race and time trial 359 

competitions is spent within the severe-intensity exercise domain (Vogt et 360 

al. 2006). Consequently, a significant proportion of the total energetic 361 

contribution must be derived from the predominantly “anaerobic” 362 

parameter of W′. The resulting Critical Power model can also be used to 363 

inform training and predict performance such as; monitoring changes in 364 

endurance fitness; assessing the effectiveness of training on specific points 365 

on the curve; and determining a cyclist’s relative strengths and weaknesses. 366 

 367 

The traditional method of Critical Power determination required cyclists to 368 

complete exhaustive exercise bouts on separate days in a laboratory (Hill, 369 

1993). Recent studies have proposed two alternative methods for 370 

estimating Critical Power output from a single testing session; a 3 minute 371 

test (Vanhatalo, Doust & Burnley, 2007) and a field test (Karsten, Jobson, 372 

Hopker, Jimenez, & Beedie, 2014a). Vanhatalo et al. (2007) proposed that 373 
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the power output sustained during the final 3045 seconds of a 3 minute all-374 

out test corresponds to Critical Power. In a follow up study (Vanhatalo, 375 

Doust & Burnley, 2008) these researchers also found the 3 minute test to 376 

track training-induced changes in Critical Power. However, recent studies 377 

indicate that the interpretation of the 3 minute test is controversial. Dekerle, 378 

Barstow, Regan, & Carter (2014) found high intra-subject variability in the 379 

agreement between 3 minute test and Critical Power, whilst Karsten, Jobson, 380 

Hopker, Passfield, & Beedie (2014c) suggest that the ergometer used may 381 

also affect agreement. As an alternative single visit protocol Karsten, Jobson, 382 

Hopker, Stevens, & Beedie (2014b) found a field test comprising of three all-383 

out trials of 3, 7 and 12 minutes, with 30-minute recovery, provides a 384 

measure of Critical Power (Karsten et al., 2014a; Karsten et al., 2014b). 385 

Indeed, Karsten (2014) has shown that Critical Power can be estimated 386 

reasonably from the peak 3-, 7- and 12-minute power output values 387 

observed during training, (i.e. without a employing a specific test protocol). 388 

Figure 5 illustrates Critical Power calculated in this manner from the 389 

combined training and racing data obtained from the Grand Tour cyclist 390 

over the course of a season. Both training and race data are used to 391 

construct the Critical Power profile so as to capture the absolute peak 3-, 7- 392 

and 12-minute efforts that the cyclist was capable of during the period of 393 

observation. It can be seen that the Grand Tour cyclist’s Critical Power and 394 

W′ wereas highest during his main competitive phase of the season 395 

(Dauphine, National Championships, Tour de France, Eneco Tour). The 396 

obvious double peak in Critical Power suggests this method of analysis may 397 

reflect changes in fitness. Interestingly, the second peak in the cyclist’s 398 
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Critical Power, and his highest W′, is seen in October is which was 399 

associated with his preparation for and competition in Paris-Bourges and 400 

Paris-Tours races. There are however, obvious limitations with the Critical 401 

Power model in that it is asymptotic in nature, and typically restricted to 402 

efforts of between 3 and 20 minutes (Vandewalle et al. 1997). 403 

 404 

------------- Figure 5 near here -------------  405 

Record Power Profile 406 

It has long been recognized that human performances are not asymptotic 407 

but tend follow an exponential curve (Kennelly, 1906). The Record Power 408 

Profile (Pinot & Grappe, 2011) acknowledges this by using maximum power 409 

output for different durations to generate a power output–duration curve 410 

that is much more extensive than the 3 to 20 minutes used to calculate 411 

Critical Power (Vanhatalo et al. 2007, Vandewalle et al. 1997). Thus, the 412 

record power profile extends the previously mentioned MMP and CP 413 

methods of analysis by establishing the relationship between different 414 

sequential records of power output and the corresponding time 415 

training/race durations during a whole race season. 416 

 417 

Figure 6 shows the Record Power Profile for the Grand Tour cyclist over 418 

different phases of the cycling season. The Record Power Profile is 419 

constructed from time intervals of 5 seconds to 5 minutes, and then over 5 420 

minutes to 240 minutes. The Record Power Profile presents the exponential 421 
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curve that reflects mean record power output of 12 W⋅kg-1 (5s) and 3 W⋅kg-1 422 

(4h). In Figure 6 the average of all training and racing data for the specified 423 

time period are presented. Therefore, the maximal values are lower than 424 

those of Pinot & Grappe (2011) who do not use all available data in the 425 

calculation of their Record Power Profile. Figure 6 shows power output for 426 

the May–August period is higher than for any other time point of the season. 427 

It is also apparent that 5s to 5 minute power output is higher in September–428 

December than January–April. In contrast, 5 minute to 240 minute power 429 

output is lower in September–December than January–April. The Record 430 

Power Profile can be divided into sections; from 5s to 5 min the profile 431 

decreases by ~50% regardless of time of the season. From 5 min to 60 min 432 

the profile decreases by 30% in January–April and October–December 433 

respectively, but by less (27%) in May–August. From 60 min to 240 minute a 434 

decline of 20% in January–April and October–December, is slightly less 435 

(19%) than in May–August.   436 

  437 

--------------- Figure 6 near here ---------------  438 

 439 

Variability in power output 440 

As with many other behavioural and physiological processes, cycling power 441 

output is highly irregular or stochastic, even during apparently steady state 442 

exercise. The variance or standard deviation of the data set provides an 443 

indication of the extent to which power output varies during training and 444 
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racing. In Figure 3 we presented data from two races for the Grand Tour 445 

cyclist with exactly the same mean power output of 236W, but where the 446 

standard deviation was quite different (Fig 3a = 138W vs. Fig 3b = 205W). 447 

Despite the identical mean power output, the higher variation in power 448 

output is likely to be indicative of a more stressful race and therefore could 449 

be useful to monitor and evaluate. Tucker et al. (2006) noted that during 450 

time-trial type efforts, the large variability in power output between and 451 

within a group of 11 cyclists, also exhibited a high degree of self-similarity. 452 

This observation suggests that the standard deviation is not the best index 453 

for monitoring power output variability during training and racing. Instead, 454 

methods that provide a calculation of long-range correlations in time series 455 

data such as Detrended Fluctuation Analysis (DFA) may be more 456 

appropriate. Within DFA analysis stronger correlations suggest a more 457 

predictable, regular time series, whereas weaker correlations indicate a less 458 

predictable time series (Peng et al., 1995). The main advantage of using DFA 459 

as opposed to other analytical methods (such as spectral analysis) is that it 460 

is robust in regard to non-stationary, or unpredictable, data in the time 461 

series (Chen et al., 2002). A Detrended Fluctuation Analysis was performed 462 

on the race data presented in Figure 3s 1 and 2 (Fig 3a DFA = 1.07 and Fig 463 

3b DFA = 0.87 respectively). Theses results are consistent with the 464 

anticipated physiological stress of the different races (Theurel and Lepers, 465 

2008). F However, further research is required to establishing whether this 466 

method reflects real physiological phenomena, or the wider applicability of 467 

fractals is required. 468 

Comment [JH2]: Mean or average power 
on its own isn’t sufficient e.g. 200w steady 
statre vs 200w mean with variances 
between 100 and 300 w is very different. 
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Modelling training and performance 469 

Monitoring training sessions and race performances with a power meter 470 

provides an opportunity for the relation between them to be modelled. 471 

Power meter data could be used to form the input for a model used to 472 

predict future performance and to prescribe and optimise training. Banister, 473 

Calvert, Savage, & Bach (1975) proposed a systems theory approach to 474 

modelling the responses to endurance training. Subsequently developed by 475 

others (Busso, 2003; Morton, 1997) their approach attempted to abstract 476 

the training process into an impulse-response based mathematical model. 477 

The model was characterised by a training impulse and a performance 478 

response linked by a mathematical ‘transfer function’ (Busso and Thomas, 479 

2006). This modelled function follows the general form: 480 

Performance = (fitness from training) – (fatigue from training) 481 

Calvert, Banister, & Savage (1976) suggested training data could be used to 482 

calculate an elicited fatigue response (that decreases performance), and two 483 

fitness responses (that increase performance). Hellard et al. (2006) 484 

suggested that modelling-based research could provide information about 485 

inter-individual differences and inform the construction of individualised 486 

training programmes. However, Taha & Thomas (2003) observe that 487 

current models (e.g. Calvert, Savage, & Bach, 1975; Morton, 1997; Busso, 488 

2003) do not correspond with contemporary understanding of physiological 489 

mechanisms and are unable to distinguish the specific effects of different 490 

training impulses. Furthermore, inter-study and inter-subject variability in 491 

model parameter estimates limit the ability to develop and apply a 492 
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generalizable model. Addressing the latter issue, some of the present 493 

authors examined whether individualised parameter values can be 494 

determined from the relation between power output and heart rate data 495 

(unpublished study). However, this method was successful, the resulting 496 

model cannot determine an individual’s capacity for fatigue. Consequently, 497 

impulse-response models might inform training planning theory, but 498 

alternative models are required to produce acceptable accuracy (Busso and 499 

Thomas, 2006). 500 

Training adaptation is a complex non-linear problem because the biological 501 

system changes itself (Pfeiffer & Hohmann, 2012). Recognising this, 502 

Edelmann-Nusser, Hohmann, & Henneberg (2002) and Pfeiffer & Hohmann 503 

(2012) used a non-linear multi-layer perceptron neural network to model 504 

the performance of an Olympic-level swimmer. In both cases the model 505 

produced a ‘prediction error’ of less than 1%. But whilst the predictive 506 

power of neural networks is impressive, they function as a “black box”  and 507 

cannot explicitly identify causal relationships (Hellard et al. 2006). A further 508 

problem is that “training” neural network models requires a large amount of 509 

training data to be collected from athletes over a prolonged period of time. 510 

In predicting the performance of a single swimmer, Edelmann-Nusser et al. 511 

(2002) and Pfeiffer & Hohmann (2012) overcame this problem by training 512 

the model with data from a second swimmer. This method proved to be 513 

successful but, as noted by the authors, it may have been fortuitous that the 514 

adaptive response of both athletes was similar.  515 
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Future directions and conclusionsconsiderations 516 

Since the introduction of the first commercially available power some 30 517 

years ago the availability and use of power meters has changed 518 

considerably. From current trends it seems likely that the cost and 519 

specification of commercially available power meters will continue to 520 

improve. These developments will facilitate our ability to monitor cyclists’ 521 

training and racing with the accuracy necessary to detect meaningful 522 

changes in performance. However, tThis in turn will require an 523 

improvement in our current methods for visualising and analysing large 524 

volumes of training data such as that proposed by Kosmidis and Passfield 525 

(2015). Particularly challenging is the development of novel methods and 526 

metrics for quantifying the training load given the stochastic nature of 527 

cyclists’ training and racing. A further challenge is to develop useful and 528 

valid models linking training and performance. An exciting prospect for the 529 

future is to be able to model the effects of individual cyclist’s training on 530 

performance. This would mean that cyclists’ training and consequent 531 

performance could be optimised with the appropriate analysis of their 532 

power meter data. Perhaps the most significant issue of all however, is that 533 

despite so many different ways to analyse power output, there is not a single 534 

reference measurement of performance. It is difficult to evaluate the 535 

implications of different methods of analysis of power meter data without 536 

being able to benchmark against corresponding changes in performance. 537 

Consequently, the biggest issue with many of the methods of analysis 538 

discussed is that they have not been able to use a model that has clear input 539 

and output variables. In this regard a promising approach may be to develop 540 
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new ways of analysing large amounts of training and race data that links 541 

time spent in training to a flexible model of performance (Kosmidis and 542 

Passfield, 2015). 543 

References 544 

Abbiss C.R., Quod M.J., Levin G., Martin D.T., Laursen P.B. (2009). Accuracy of 545 

the Velotron cycle ergometer and SRM Power Meter. International Journal of 546 

Sports Medicine. 30(2):107-12. 547 

Abbiss, C. R., Straker, L., Quod, M. J., Martin, D. T., & Laursen, P. B. (2010). 548 

Examining pacing profiles in elite female road cyclists using exposure 549 

variation analysis. British Journal of Sports Medicine, 44(6): 437–442.  550 

Banister, E. W., Calvert, T. W., Savage, M. V., and Bach, T. M. (1975). A system 551 

model of training for athletic performance. Australian Journal of Sports 552 

Medicine, 7: 57–61. 553 

Bertucci, W., Duc, S., Villerius, V., Pernin, J. N., & Grappe, F. (2005). Validity 554 

and reliability of the PowerTap mobile cycling powermeter when compared 555 

with the SRM Device. International Journal of Sports Medicine, 26(10): 868–556 

873.  557 

Bertucci, W., Crequy, S., & Chiementin, X. (2013). Validity and reliability of 558 

the G-Cog BMX Powermeter. International Journal of Sports Medicine, 34(6): 559 

538–543.  560 

Busso, T. (2003). Variable dose-response relationship between exercise 561 

training and performance. Medicine and Science in Sports and Exercise, 35: 562 

1188–1195. 563 

Formatted: Font: Italic

Page 24 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Busso, T., & Thomas, L. (2006). Using mathematical modelling in training 564 

planning. International Journal of Sports Physiology and Performance, 1: 565 

400–405. 566 

Calvert, T.W., Banister, E.W., & Savage, M.V. (1976). A systems model of the 567 

effects of training on physical performance. IEEE Transactions on Systems, 568 

Man and Cybernetics, 6(2): 94–102. 569 

Carpes, F. P., Mota, C. B., & Faria, I. E. (2010). On the bilateral asymmetry 570 

during running and cycling - a review considering leg preference. Physical 571 

Therapy in Sport, 11(4): 136–142.  572 

Chen, Z., Ivavnov, P.Ch., Hu, K., Stanley, H.E. (2002). Effect of 573 

nonstationarities on detrended fluctuation analysis. Physical Reviews E, 574 

Statistical, Nonlinear Soft Matter Physics. 65:041107. 575 

Coggan, A.R. (2003). Training and racing using a power meter: an 576 

introduction.  577 

http://www.ipmultisports.com/ref_lib/Coggan_Power_Meter.pdf; [Accessed 578 

2014 Dec 10] 579 

Dekerle J, Barstow TJ, Regan L, Carter H. (2014). The critical power concept 580 

in all-out isokinetic exercise. Journal of Science and Medicine in Sport. 581 

17(6):640-4.  582 

Duc, S., Villerius, V., Bertucci, W., & Grappe, F. (2007). Validity and 583 

reproducibility of the ErgomoPro power meter compared with the SRM and 584 

Powertap power meters. International Journal of Sports Physiology and 585 

Performance, 2(3): 270–281.  586 

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: English (U.S.)

Page 25 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Ebert, T.R., Martin, D.T., McDonald, W., Victor, J., Plummer, J., & Withers, R.T. 587 

(2005). Power output during women’s World Cup road cycle racing. 588 

European Journal of Applied Physiology, 95(5–6): 529–536. 589 

Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and 590 

prediction of competitive performance in swimming upon neural networks. 591 

European Journal of Sport Sciences, 2: 1–12. 592 

Franklin, K. L., Gordon, R. S., Baker, J. S., & Davies, B. (2006). Comparison of 593 

methods for determining power generated on a rope-braked cycle 594 

ergometer during low-intensity exercise. Sports Engineering, 9: 29–38.  595 

Gardner, A. S., Stephens, S., Martin, D. T., Lawton, E., Lee, H., & Jenkins, D. 596 

(2004). Accuracy of SRM and Power Tap power monitoring systems for 597 

bicycling. Medicine & Science in Sports & Exercise, 36(7): 1252–1258.  598 

Hellard P., Avalos, M., Lacoste, L., Barale, F., Chatard, J.C., & Millet, G.P. 599 

(2006). Assessing the limitations of the Banister model in monitoring 600 

training. Journal of Sports Sciences, 24(5): 509–520. 601 

Hill, D.W. (1993). The critical power concept. A review. Sports Medicine, 16: 602 

237–254. 603 

Hurst, H.T., & Atkins, S. (2006). Agreement between polar and SRM mobile 604 

ergometer systems during laboratory-based high-intensity, intermittent 605 

cycling activity. Journal of Sports Sciences, 24(8):863–868.  606 

Jobson, S.A., Nevill, A.M., & Jeukendrup, A. (2005). The efficacy of power 607 

output measurement during a professional cycle stage race: A case study. 608 

Journal of Sports Sciences, 23(11–12): S1292. 609 

Page 26 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Jobson, S. A., Passfield, L., Atkinson, G., Barton, G., & Scarf, P. (2009). The 610 

analysis and utilization of cycling training data. Sports Medicine, 39: 833–611 

844. 612 

Jones, S.M., & Passfield, L. (1998) The dynamic calibration of bicycle power 613 

measuring cranks, in: Haake S.J., (ed.) The Engineering of Sport. Oxford: 614 

Blackwell Science. 265-275 615 

Karsten, B. (2014). Analysis of reliability and validity of critical power 616 

testing in the field. PhD thesis. University of Greenwich. UK. 617 

Karsten, B., Jobson, S.A., Hopker, J.G., Jimenez, A., & Beedie, C. (2014a). High 618 

agreement between laboratory and field estimates of critical power in 619 

cycling. International Journal of Sports Medicine, 35(04): 298–303. 620 

Karsten, B., Jobson, S.A., Hopker, J., Stevens, L., & Beedie, C. (2014b). Validity 621 

and reliability of critical power field testing. European Journal of Applied 622 

Physiology.  623 

Karsten B, Jobson SA, Hopker J, Passfield L, & Beedie C. (2014c). The 3-min 624 

test does not provide a valid measure of critical power using the SRM 625 

isokinetic mode. International Journal of Sports Medicine, 35(04): 304-309.  626 

Kennelly, A.E., (1906). An approximate law of fatigue in the speeds of racing 627 

animals, Proceedings of the American Academy of Arts and Sciences, 12(15): 628 

275-331. 629 

Kirkland, A., Coleman, D. A., Wiles, J. D., & Hopker, J. G. (2008). Validity and 630 

reliability of the Ergomopro powermeter. International Journal of Sports 631 

Medicine, 29(11): 913–916.  632 

Page 27 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Kosmidis, I., Passfield, L. (2015) Linking the performance of endurance 633 

runners to training and physiological effects via multi-resolution elastic net. 634 

http://arxiv.org/abs/1506.01388 635 

Kyle, C. R. (1988). The Mechanics and Aerodynamics of Cycling. Champaign, 636 

IL: Human Kinetics Press. 637 

Lucía, A., Hoyos, J., Carvajal, A., Chicharro, J.L. (1999). Heart rate response to 638 

professional road cycling: the Tour de France. International Journal of Sports 639 

Medicine. 20:167-172. 640 

Mathiassen, S.E., & Winkel, J. (1991) Quantifying variation in physical load 641 

using exposure-vs-time data. Ergonomics, 34(12): 1455-1468. 642 

Martin, J.C., Milliken, D.L., Cobb, J. E., McFadden, K.L. & Coggan, A.R. (1998). 643 

Validation of a mathematical model for road cycling power. Journal of 644 

Applied Biomechanics. 14:276–291. 645 

Martin, J. C., Gardner, A. S., Barras, M. & Martin, D. T. (2006). Modeling sprint 646 

cycling using field-derived parameters and forward integration. Medicine 647 

and Science in Sports and Exercise, 38(3): 592-597. 648 

Millet, G. P., Tronche, C., Fuster, N., Bentley, D. J., & Candau, R. (2003). 649 

Validity and reliability of the Polar S710 mobile cycling powermeter. 650 

International Journal of Sports Medicine, 24(3): 156–161.  651 

Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular 652 

group. Ergonomics, 8: 329–338. 653 

Morton, R.H. (1997). Modelling training and overtraining. Journal of Sports 654 

Sciences, 15: 335–340. 655 

Page 28 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Munoz, I., Cejuela, R., Seiler, S., Larumbe, E., Esteve-Lanao, J. (2014). 656 

Training-intensity distribution during an Ironman season: Relationship with 657 

competition performance. International Journal of Sports Physiology and 658 

Performance, 9: 332-339.  659 

Palmer, G.S., Hawley, J.A., Dennis, S.C., Noakes, T.D. (1994). Heart rate 660 

responses during a 4-d cycle stage race. Medicine and Science in Sports 661 

Exercise. 26:1278-1283. 662 

Passfield, L., Dietz, K. C., Hopker, J. G., & Jobson, S. A. (2013). Objective time-663 

binning in exposure variation analysis. IMA Journal of Management 664 

Mathematics, 24(3): 269–282.  665 

Peiffer, J.J., & Abbiss, C.R. (2011). Influence of environmental temperature on 666 

40km cycling time-trial performance. International Journal of Sports 667 

Physiology and Performance. 6: 208-220.  668 

Peng, C.K., Havlin, S., Stanley, H.E., & Goldberger, A.L. (1995). Quantification 669 

of scaling exponents and crossover phenomena in nonstationary heartbeat 670 

time series. Chaos, 5(1):82-87.  671 

Pinot, J., & Grappe, F. (2011). The record power profile to assess 672 

performance in elite cyclists. International Journal of Sports Medicine. 32: 673 

839-844. 674 

Pfeiffer, M., & Hohmann, A. (2012). Applications of neural networks in 675 

training science. Human Movement Science, 31: 344–359. 676 

Page 29 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Quod, M.J. Martin, D.T., Martin, J.C., Laursen, P.B. (2010). The power profiles 677 

predicts road cycling MMP. International Journal of Sports Medicine.  31: 678 

397-401.   679 

Skiba, P. (2007). Evaluation of a novel training metric in trained cyclists. 680 

Medicine and Science in Sports and Exercise; 39(5): S448. 681 

Smak, W., Neptune, R. R., & Hull, M. L. (1999). The influence of pedaling rate 682 

on bilateral asymmetry in cycling. Journal of Biomechanics, 32(9): 899–906.  683 

Taha, T., & Thomas, S.G. (2003). Systems modelling of the relationship 684 

between training and performance. Sports Medicine, 33(14): 1061–1073. 685 

Theurel, J., & Lepers, R. (2008). Neuromuscular fatigue is greater following 686 

highly variable versus constant intensity endurance cycling. European 687 

Journal of Applied Physiology, 103(4): 461–468. 688 

Tucker, R., Bester, A., Lambert, E. V., Noakes, T. D., Vaughan, C. L., & St Clair 689 

Gibson, A. (2006). Non-random fluctuations in power output during self-690 

paced exercise. British Journal of Sports Medicine, 40(11), 912-917.  691 

Vandewalle, H., Vautier, J. F., Kachouri, M., LeChevalier, J.-M., & Monod, H. 692 

(1997). Work-exhaustion time relationships and the critical power concept. 693 

A critical review. Journal of Sports Medicine and Physical Fitness, 37(2): 89–694 

102. 695 

Vanhatalo, A., Doust, J.H., Burnley, M. (2007). Determination of critical 696 

power using a 3-min all-out cycling test. Medicine and Science in Sports and 697 

Exercise. 39(3):548-55. 698 

Page 30 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Vanhatalo, A., Doust, J.H., Burnley, M. (2008). A 3-min all-out cycling test is 699 

sensitive to a change in critical power. Medicine and Science in Sports and 700 

Exercise. 40(9):1693-1699.  701 

Vogt, S., Heinrich, L., Schumacher, Y. O., Blum, A., Roecker, K., Dickhuth, H.-H., 702 

& Schmid, A. (2006). Power output during stage racing in professional road 703 

cycling. Medicine and Science in Sports and Exercise, 38(1): 147–151.  704 

Vogt, S., Schumacher, Y. O., Roecker, K., Dickhuth, H. H., Schoberer, U., 705 

Schmid, A., & Heinrich, L. (2007). Power Output during the Tour de France. 706 

International Journal of Sports Medicine, 28(9): 756–761.  707 

Wooles, A. L., Robinson, A. J., & Keen, P. S. (2005). A static method for 708 

obtaining a calibration factor for SRM bicycle power cranks. Sports 709 

Engineering, 8: 137–144. 710 

  711 

Page 31 of 39

URL: http://mc.manuscriptcentral.com/rjsp

Journal of Sports Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
Figure 1: Power output for two training sessions from a professional Grand 712 

Tour cyclist. Power output is 30 second rolling mean. See text for further 713 

details. 714 

 715 

 716 

 717 

 718 

Figure 2: Mean Maximal Power Output for two training sessions from a 719 

professional Grand Tour cyclist. Data are the same as used in Figure 1. 720 

 721 

 722 

 723 

 724 

Figure 3: Power output for two races from a professional Grand Tour cyclist. 725 

Mean power output in both races is identical but SD varies notably (138W 726 

vs. 205W). 727 
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Figure 4: Exposure Variation Analysis for two races from a professional 733 

Grand Tour cyclist. The frequency of data observed between the different 734 

intensities (W) is shown. Different symbols are used to show the effort 735 

duration (seconds). Data are the same as used in Figure 3. 736 

 737 

 738 

 739 

 740 

Figure 5: Critical Power modelled from power meter data of a professional 741 

Grand Tour cyclist. Critical Power is calculated from all training and racing 742 

data each month. Error bars show SD. 743 

 744 

 745 

 746 

 747 

Figure 6: Record Power Profile for a professional Grand Tour cyclist over 3 748 

different phases of the cycling season (January to April, May to August, and 749 

September to December). Figure 6a shows the Record Power Profile for 750 

efforts of 5 seconds to 5 minutes. Figure 6b shows the Record Power Profile 751 

for efforts more than 5 minutes to 240 minutes. 752 
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